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Photon statistics of a single atom laser

Bobby Jones, Shohini Ghose, James P. Clemens, and Perry R. Rice
Department of Physics, Miami University, Oxford, Ohio 45056

Leno M. Pedrotti
Department of Physics, University of Dayton, Dayton, Ohio 45469

~Received 3 February 1999!

We consider a laser model consisting of a single four-level or three-level atom, an optical cavity, and an
incoherent pump. Results for photon statistics for varying pump levels are obtained using a quantum trajectory
algorithm. In particular, we calculate the mean photon number, Fano factor~which is the variance over the
mean!. We examine that the behavior of the single-atom device asb, the fraction of spontaneous emission into
the lasing mode, is varied. Typical values considered forb are 0.01,b,1.0. We find that for large enoughb,
lasing action, with properties similar to those predicted by semiclassical theories that factorize atom-field
correlations and use a small-noise approximation, can occur. Squeezing can occur asb is increased. There is
no evidence of a sharp phase transition from weakly excited thermal light to coherent light at a particular pump
power. This is consistent with work on many-atom lasers withb values in the range considered here. Asb is
increased, the output goes from quasithermal light to coherent and finally to squeezed light, progressing into a
fully quantum-mechanical regime. We also consider the effects of cavity damping and spontaneous emission
rates on these results.@S1050-2947~99!06510-5#

PACS number~s!: 42.50.Ar, 42.50.Dv, 42.55.2f

I. INTRODUCTION

Recently it has become clear that cavity QED effects such
as enhancement and suppression of spontaneous emission
lasers might be used to favorably alter device properties@1#.
Typically, the enhancement or suppression of spontaneous
emission is accomplished through a reduction of the size of
the device. In a cavity of transverse dimension less than half
a wavelength, spontaneous emission to nonlasing modes is
suppressed@2#. A decrease in cavity-mode volume increases
coupling to the lasing mode. We refer to such devices as
microcavity lasers. The reduction in size is also driven by a
desire to have many such devices etched on a semiconduct-
ing wafer, in some sort of hybrid electro-optical computer.

A key parameter for microcavity lasers isb, the fraction
of spontaneous emission into the lasing mode. In the limit
thatb tends to unity, the gain medium is coupled only to one
mode, the lasing mode. Hence, pump energy leaves the
atomic system in the form of photons in the cavity mode,
which then exit the cavity through an output coupler. The
input-output curve is thus linear with no abrupt transition
from a nonlasing to a lasing state. This behavior has led to
proposals for ‘‘thresholdless’’ lasers@3#, and a long discus-
sion about the location~or even existence!of a lasing tran-
sition akin to that described by DiGiorgio and Scully for
‘‘ordinary’’ lasers @4# in these devices. Recent studies of the
photon statistics of highb devices have illuminated the dif-
ference between various regimes of operation for a micro-
cavity laser@5,6#. This work has been mainly concerned with
many-atom systems. In this paper we investigate a single-
atom laser, and the effect of cavity QED conditions on such
a device. We emphasize that these single-atom lasers differ
from micromasers/microlasers where atoms in the excited
state are deposited in the cavity in some manner and then
exit the cavity at some later time. The devices we consider

may correspond to trapped atoms in a cavity, or perhaps an
exciton in a quantum dot. In the latter case, many-body ef-
fects must also be considered. The former case may be ap-
proximated by dropping cold atoms from a magneto-optical
trap, where a cavity transit time is on the order of hundreds
of lifetimes @7,8#.

A number of authors have shown that the light emitted by
a single, pumped atom placed into an optical cavity should
exhibit characteristics similar to that emitted by macroscopic
lasers provided that Jaynes-Cummings coupling between the
atom and the field is large enough, and that a single-atom
laser may emit amplitude squeezed light@9,10,11#. We con-
tinue those investigations with a systematic description of
the output properties of a single atom laser as a function of
b. A quantum trajectory approach is used for numerical con-
venience. We begin with a brief review of the quantum tra-
jectory method in Sec. II. Section III deals with the details of
the four-level laser model, and results for the photon statis-
tics are presented in Sec. IV. The three-level system and its
photon statistics are discussed in Sec. V, and we conclude in
Sec. VI.

II. QUANTUM TRAJECTORY THEORY

We outline below the general quantum trajectory method
in the form developed by Carmichael@12#. Other formula-
tions also exist@13,14#, but this one is most direct for our
purposes. Our system is described by a master equation that
can be written in the general Lindblad form

ṙ52 i @Hs ,r#1(
j

~ĈjrĈj
12 1

2 Ĉj
1Ĉjr2 1

2 rĈj
1Ĉj !,

~1!

where the terms involving theĈj ~which are sometimes
called collapse operators! describe the system-reservoir cou-
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pling. Formally, the master equation can be writtenṙ5Lr.
The simulation equations can be generated by first identify-
ing terms that can be written as commutators or anticommu-
tators. These terms can be represented by a wave function
undergoing a Schroedinger equation evolution using a non-
Hermitian Hamiltonian. The remaining terms identify the su-
peroperatorS

Sr5(
j

Ĉ jrĈj
1 . ~2!

The parts of the master equation that can be written as com-
mutators or anticommutators are then written as

~L2 S!r52
i

\
@HS ,r#1@HD ,r#1

52
i

\
@HS ,r#2

i

\
@ i\HD ,r#*

52
i

\
@HS2 i\HD ,r#* , ~3!

where

HD5 1
2 Ĉj

1Ĉj , ~4a!

@A,B#15AB1BA, ~4b!

@A,B#* 5AB2B1A1. ~4c!

A quantum trajectory is associated with a stochastic wave
function ucc(t)& that is conditioned upon a history of obser-
vations recorded by ideal detectors that are capable of detect-
ing every photon emitted by the system. Now,r(t) is related
to ucc(t)& by

r~ t !5ucc~ t !&^cc~ t !u. ~5!

Here, the overbar represents an ensemble average over many
trajectories. The time evolution ofucc(t)& determines the
instantaneous rates of random photon detection at the ideal
detectors,

r j~ t !5^cc~ t !uĈJ
1Ĉj ucc~ t !&. ~6!

If no photon is detected, the conditioned wave function is
propagated forward in time by a non-Hermitian Hamiltonian,
H5HS1 i\HD , so that

d

dt
ucc~ t !&5

2 iH

\
ucc~ t !&. ~7!

Since the evolution doesn’t preserve the norm ofucc(t)&, we
normalize the wave function at each step. The temporal evo-
lution is performed on the computer in small time steps via
ucc(t1Dt)&5e2( i /\)HDtucc(t)&'@12( iHD t/\)#ucc(t)&.
The times at which the photon emissions occur is determined
in Monte Carlo style using the ratesr j (t). The probability of
an event occurring in (t,t1Dt)] is r j (t)Dt. Each emission
event entails a wave function collapse,

ucc~ t !&→
Ĉj ucc~ t !&

A^cc~ t !uĈj
1Ĉj ucc~ t !&

, ~8!

representing the action ofS and subsequent normalization.
This unraveling of the master equation corresponds to direct
detection of photons and is a natural one to use when one
wishes to determine the photon statistics of the field. In our
case we will have several collapse processes, and our wave
function will be conditioned on various sets of perfect pho-
todetectors, one detecting photons emitted from the cavity,
one detecting fluorescence out the side of the cavity at the
frequency of the laser transition, and so on. The connection
between this unraveling and others based, for example, on
homodyne detection is well elucidated in the article by Wise-
man@13#. The approach discussed above can be generalized
to absorption events in the case of an incoherent pumping
mechanism, as we will use here.

III. SINGLE FOUR-LEVEL-ATOM LASER

In our model we adiabatically eliminate the upper atomic
level by assuming that the transition rate from it to the upper
state of the lasing transition is much larger than the other
rates in the model. A schematic diagram of the system is
shown in Fig. 1. The wave function is written using the
atomic-state, cavity-photon-number-state basis. In our nu-
merical work, the cavity-photon-number states are typically
truncated at 100. The atomic raising and lowering operators
are denoteds i j 5u j &^ i u. Thus,s12 is a raising operator and
s21 is a lowering operator. The cavity field operators are the
boson annihilation,a, and creation,a†, operators. A single
cavity mode is resonant with the atomic lasing transition
whose interaction is described by the rotating wave, dipole
approximation, Jaynes-Cummings Hamiltonian

FIG. 1. Schematic diagram of a single four-level atom in a cav-
ity with an incoherent pump, and level 4 adiabatically eliminated.
For the four-level system,g i j ’s are spontaneous emission rates from
level i to j, andG8 is a pump rate. For the three-level systemG is an
effective pump rate,g is the spontaneous emission rate on the lasing
transition, andg f is the spontaneous emission rate from the lower
lasing level. For both systems,k is the cavity decay rate andg is the
atom-field coupling strength.
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Hs5 i\g~a†s322as23!. ~9!

We begin with the master equation in the Born-Markoff ap-
proximation,

ṙ5
2 i

\
@Hs ,r#1k~2ara†2a†ar2ra†a!1

G

2
~2s13rs31

2s31s13r2rs31s13!1
g

2
~2s32rs232s23s32r

2rs23s32!1
g f

2
2s21rs122s12s21r2rs12s21), ~10!

whereg is the Jaynes-Cummings dipole coupling rate to the
cavity field,G is the pump rate,g is the radiative decay rate
for the u3&→u2& transition,g f is the radiative decay rate for
the u2&→u1& transition, and 2k is the cavity energy-loss rate.
Usually we will considerg f much larger thang, and refer to
g f as the fast decay rate. The incoherent pump is modeled by
coupling levels 1 and 4 to a heat reservoir at a large negative
temperature@15#.

In the quantum trajectory formalism, we will take the con-
ditioned wave function to be

ucc~ t !&5 (
n50

`

A1,n~ t !e2 iE1,ntu1,n&1A2,n~ t !e2 iE2,ntu2,n&

1A3,n~ t !e2 iE3,ntu3,n&. ~11!

Here, theEi ,n5n\v1Ei are the energies of the joint atom-
field eigenstates in the absence of the interaction. Here,i
denotes the atomic state andn denotes the photon number.
The Ai ,n are the conditioned probability amplitudes associ-
ated with these states. The non-Hermitian Hamiltonian is

HD5\~v2 ik!a†a1\v
sz

2
1hv1S1 i\g~a†s322as23!

2 i\
g

2
s23s322 i\

g f

2
s12s212 i\

G

2
s31s13, ~12!

where\v is the energy of a photon produced in the lasing
transition (3→2) andsz is the usual Pauli operator for the
lasing transition. We have also definedv15E1 /\ and S
5u1&^1u as the energy and population operator of level 1.

The collapse processes are chosen, in accordance with
Eqs.~2! and ~3!, and master equation~10! to be

Ĉ15Ags32, ~13a!

Ĉ25Ag fs21, ~13b!

Ĉ35AGs13, ~13c!

Ĉ45A2ka. ~13d!

These represent the following four processes: spontaneous
emission onu3& to u2& to noncavity modes, spontaneous emis-
sion on u2& to u1& to all modes, incoherent pumping, and
cavity decay. The corresponding probabilities of collapse in

time Dt are found using the rates of collapse given by Eq.~6!
and the wave function Eq.~11! to be

P15gDt (
n50

`

uA3,nu2, ~14a!

P25g fDt (
n50

`

uA2,nu2, ~14b!

P35GDt (
n50

`

uA1,nu2, ~14c!

P452kDt (
n50

`

n~ uA1,nu21uA2,nu21uA3,nu2!. ~14d!

The non-Hermitian evolution of the conditioned probability
amplitudes is given by

Ȧ1,n52S G

2
1nk DA1,n , ~15a!

Ȧ2,n1152S g f

2
1~n11!k DA2,n111gAn11A3,n ,

~15b!

Ȧ3,n52S g

2
1nk DA3,n2gAn11A2,n11 . ~15c!

Let us consider what happens wheng f is the fastest of all the
rates (g f@g,g,k,G). In this case the amplitude associated
with the lower lasing state relaxes to steady state very rapidly
so that Eq.~15b!can be solved in steady state and the result
used in Eq.~15a!. We find

Ȧ3,n52S g

2
1nk DA3,n2

g2

k~n11!1g f /2
~n11!A1,n11 .

~16!

This form allows us to deduce the spontaneous emission fac-
tor b. With n50, we may identify the first term as sponta-
neous emission into the nonlasing modes, and the second
term as spontaneous emission into the lasing mode; hence,
we have

b5
2g2/g f

2g2/g f1g/2
. ~17!

Note that we have ignoredk compared tog f /2 in arriving at
this expression. This expression is consistent with a calcula-
tion of the spontaneous emission rate into the cavity mode
using Fermi’s golden rule; the transition rate is given by the
square of the matrix element~g! times the density of states
@ inverse bandwidth5(g f /2)21#. This is the numerator ofb,
while the denominator is the total spontaneous emission rate
(2g2/g f1g/2), where the latter term is the spontaneous
emission rate out the side of the cavity. Outside the good-
cavity limit the spontaneous emission factor would take the
form b5@2g2/(g f12k)#/@2g2/(g f12k)1g/2#.

We typically ran the code for 10 000 atomic lifetimes,
with a time step chosen as one hundredth of the inverse of
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the fastest rate in the problem. A separate random number
was used to determine whether one of the four collapses
occurred in a time stepdt. In the rare case that multiple
collapses might occur in a given time step, we randomly pick
one. There are other methods for dealing with this, but they
all become equivalent for small time steps.

Note also that the Eqs.~15! are coupled only to each
other. So during the non-Hermitian evolution, we need only
propagate 3 quantities instead of 3* n. Collapses increase or
lower the photon number indexn. This is due to the incoher-
ent nature of the pump and decay processes, which are col-
lapse processes in this formalism.

IV. PHOTON STATISTICS OF THE FOUR-LEVEL LASER

We calculate a number of physical quantities of interest
including the average intracavity photon number,

^n&5^ccua†aucc&, ~18!

and the Fano factorF ~photon number variance/mean!,

F5
^n2&2^n&2

^n&
511^n&@g~2!~0!21#. ~19!

Here, g(2)(0)5^a†a†aa&/^a†a&2 is the usual second-order
intensity-correlation function. We examine these as a func-
tion of pump rateG for different values ofb/g, k/g, and
g f /g. For purposes of comparison, Fig. 2 shows a typical
Fano factor vs the pumping-rate plot for a conventional small
b laser. The large fluctuations at the threshold pump value
(G th) are indicative of a well-defined phase transition. We
begin by examining the average photon number versus pump
rate in Figs. 3~a!and 3~b!; the latter figure is an enlargement
of the small pump regime of the former. In these figures we
see that the photon number rises with the pump and then
saturates at a very small value for large pump rates. This is
true for smaller values ofb as well. As this is a single-atom
device, it does no good to pump at a rate faster than the
fastest decay rate, which acts as a bottleneck. Until the atom
makes the transition fromu2& to u1&, it cannot be reexcited to

level u4&. For small pump values, the mean photon is propor-
tional to the pump rate, independent ofb.

We next consider the Fano factor as a measure of the
fluctuations in the photon number in Fig. 4. Forb50.3, we
see findF51 for essentially zero pump, and then rises to
some value and saturates. This is indicative of the behavior
for smallerb as well, although the asymptotic value for large
pumps is smaller. Asb is increased to 0.5 we observe the
Fano factor showing a peak and then dropping back to unity.

FIG. 2. Behavior of the Fano factor as a function of the pump
for a macroscopic laser. Note that asb increases the peak gets
smaller and wider.

FIG. 3. ~a! Mean photon number versus pump for various values
of b for large pumps. For all plots,g f /g510.0 andk/g50.1.
Curves are from bottom to top;b50.1, b50.2, b50.3, b50.4,
b50.5, b50.6, b50.6, b50.7, b50.8, b50.9. ~b! Mean pho-
ton number versus pump for various values ofb for small pumps.
For all plots,g f /g510.0 andk/g50.1. Curves are from bottom to
top; b50.1, b50.2, b50.3, b50.4, b50.5, b50.6, b50.6, b
50.7, b50.8, b50.9.
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This small fluctuation peak is all that remains of the peak
depicted in Fig. 2 for macroscopic lasers. Please note that the
maximum value of the Fano factor occurs well after the
mean photon number is greater than 1. In most lasers, these
features occur at the same pump rate. In fact, either criteria
has been used to locateG th for macroscopic lasers. It has
been proposed that the pump rate at which^n&51 be the
threshold pump rate@16#. Clearly these criteria lead to dif-
ferent thresholds for the single-atom laser considered here.
What is the correct criteria to use? When is this device a
laser? We can determine no pump rate at which an infinitesi-
mal change in pump switches the device from a nonlasing
state to a laser. We see that different criterion for determin-
ing the threshold pump, which give the same result for small
b lasers, yield different values when applied to largeb lasers
as discussed by Rice and Carmichael@5#. At high b values,
one is not in the thermodynamic limit and one does not ex-
pect a sharp threshold, no matter how many atoms form the
gain medium. Here in the single-atom device we see a
smeared out remnant of the phase transition predicted for
many-atom lasers@5#.

Increasingb to around 0.7 leads to a very small peak in
the Fano factor, and an asymptotic value less than one, indi-
cating antibunching as first predicted by Mu and Savage@6#.
For b values greater than 0.8 or so, the Fano factor is 1 for
small pumps and decreases to a value slightly above 0.85.
This photon antibunching or number squeezing is analogous
to that observed by several groups@17–20# in many-atom
lasers. In that work, the number squeezing was observed in a
regime of strong pumping and fast decay rates connecting
nonlasing levels. The maximal antibunching predicted here
is similar to that predicted in the many-atom systems. This
antibunching occurs due to an effective pump regularization,
as the atom rarely lingers in a given state, but is excited and
decays in a more regular fashion, giving rise to a rather regu-
lar sequence of photon emission@17–20#. As noted by Mu

and Savage@9#, this is essentially a single-atom effect, and
persists in the limit of a one-atom laser.

We now examine the dependence of^n& andF on g f , the
transition rate out of the lower lasing level. In Fig. 5~a!we
plot the mean photon number versus pump for a variety of
values ofg f ~with b50.8 andk/g50.1). As noted earlier,
the mean photon number saturates at pump rates comparable
to g f . In Fig. 5~b!, we plot the Fano factor versus pump for
a variety of values ofg f /g. We see that for small values of
g f /g, the Fano factor starts near unity and rises to an
asymptotic value of 1.3, indicating photon bunching. As

FIG. 4. Fano factor versus pump rate for various values ofb.
For all plots,g f /g510.0 andk/g50.1. ~i! b50.1, ~ii! b50.3,
~iii! b50.5, ~iv! b50.7, and~v! b50.9.

FIG. 5. ~a! Mean photon number vs pump rate withb50.8 and
k/g50.1 for variousg f . We have labeled curves by~i! g f /g
51.0, ~ii! g f /g55.0, and~iii! g f /g510.0. ~b! Fano factor vs
pump rate withb50.8 andk/g50.1 for variousg f . We have
labeled curves by~i! g f /g51.0, ~ii! g f /g55.0, and ~iii! g f /g
510.0.
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g f /g is increased, we see that the Fano factor decreases
initially from 1, indicating antibunching, but then rises to an
asymptotic value above 1. Finally, as we makeg f /g on the
order of 10 or more, we see a small peak in the Fano factor
for very small pumps, dropping to a value of about 0.85, and
then reaching 1 for large pumps. Here in the single-atom
system, ifg f is small, there are essentially two independent
Poisson processes that contribute to the noise, the fast tran-
sition and the pump. Ifg f is large, then the atom very
quickly relaxes to the ground state after emitting on the las-
ing transition, and so the only noise is the random nature of
the pump, resulting in reduced fluctuations.

In Fig. 6~a!, we plot the average photon number versus

pump for a variety of values ofk. It is seen that decreasingk
increases the intracavity photon number,^n& is proportional
to 1/k as expected. In Fig. 6~b!we see that the Fano factor
reaches a smaller minimal value for largerk. In Fig. 6~c!,
however, we see that the amount of antibunching as mea-
sured by the second-order intensity-correlation function
g(2)(0)2151/̂ n& (F21) is actually greater for larger cav-
ity decay rates. A reduction in antibunching is not surprising
for a better cavity, as the field fluctuations are essentially
averaged out. Photons leak out of the cavity in a Poisson
process determined by the cavity decay rate for a good cav-
ity. In a bad cavity, they are emitted and basically leave the
cavity at the first encounter with the mirror. Hence, the bad-

FIG. 6. ~a! Mean photon number vs pump rate withb50.8 andg f /g510.0 for variousk. We have labeled curves by~i! k/g51.0, ~ii!
k/g50.1, and~iii! k/g50.01. ~b! Fano factor vs pump rate withb50.8 andg f /g510.0 for variousk. We have labeled curves by~i!
k/g51.0, ~ii! k/g50.1, and~iii! k/g50.01. ~c! g(2)(0)21 vs pump rate withb50.8 andg f /g510.0 for variousk. We have labeled
curves by~i! k/g51.0, ~ii! k/g50.1, and~iii! k/g50.01.
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cavity system preserves the regular emission of the photons
by the atom, leading to larger antibunching.

V. SINGLE-ATOM THREE-LEVEL LASER

The level structure for this system is depicted in Fig. 7.
This system is described by the master equation

ṙ5
2 i

\
@Hs ,r#1k~2ara†2a†ar2raa†!1

g↓
2

~2s2rs1

2s1s2r2rs1s2!1
g↑
2

~2s1rs22s2s1r

2rs2s1!. ~20!

Here, k is the cavity decay rate as before, ands6 are the
usual Pauli raising and lowering operators. The spontaneous
emission rate out of the cavity isg↓ and the incoherent pump
rate is given byg↑ . In our quantum trajectory simulations,
we use the following wave function:

ucc~ t !&5 (
n50

`

Bg,n~ t !e2 iEg,ntug,n&1Be,n~ t !e2 iEe,ntue,n&.

~21!

Here, Bg,n and Be,n are the conditioned probability ampli-
tudes for the lower and upper lasing levels andEg,n andEe,n
are the energies of these atom-field levels in the absence of
an interaction. The non-Hermitan Hamiltonian is given by

HD5\~v2 ik!a†a1\v
sz

2
1 i\g~a†s22as1!

2 i\
g↓
2

s1s22 i\
g↑
2

s2s1 . ~22!

Here,\v is the energy difference between the lasing levels.
There are now three collapse operators,

Ĉ15Ag↓s2 , ~23a!

Ĉ25Ag↑s1 , ~23b!

Ĉ35A2ka. ~23c!

These correspond to spontaneous emission events out the
side of the cavity, incoherent pumping events, and photons
exiting the output mirror. The associated probabilities for
these events in a timeDt are

P15g↓Dt (
n50

`

uBe,nu2, ~24a!

P25g↑Dt (
n50

`

uBg,nu2, ~24b!

P352kDt (
n50

`

n~ uBg,nu21uBe,nu2!. ~24c!

The probability amplitudes obey the following equations of
motion:

Ḃg,n52S g↑
2

1nk DBg,n1gAnBe,n21 , ~25a!

Ḃe,n2152S g↓
2

1nk DBe,n212gAnBg,n . ~25b!

In this system, the spontaneous emission factorb has the
form

b5
2g2/~g↓1g↑!

2g2/~g↓1g↑!1g↓/2
. ~26!

Note thatb is pump-dependent. In the limit of small pumps
and small coupling, this becomesb54g2/g↓

2. However, for
large pumps the value tends towardsb54g2/g↓g↑ , in-
versely proportional to the pump strength, and tending to
zero in this limit. A plot of photon number versus pump is
shown in Fig. 8~a!. Here, we see^n& increases as the pump is
increased, and then declines dramatically as the pump is fur-
ther increased. This has been discussed by Mu and Savage
@9# in terms of dephasing of the atomic dipole. Here we can
see that it is a manifestation of the pump dependence ofb in
the language of microlasers, and a reduction of spontaneous
emission into the lasing mode. From the quantum trajectory
point of view, it is obvious that a large incoherent pump rate
is constantly ‘‘collapsing’’ the atom into the excited state,
and hence no atomic polarization is ever generated, and
hence no coupling to the lasing mode, in keeping with the
original discussion of Mu and Savage@9#. A plot of the Fano
factor, Fig. 8~b!, indicates a fluctuation peak as the laser
turns on, and then a broad fluctuation peak associated with
turn off of the laser. Figure 8~c! exhibits the trapping of the
atom in the excited state for strong incoherent pumps, which
results in an effective decoupling from the field as previously

FIG. 7. Schematic diagram of single-atom three-level laser. For
the three-level system,g i j ’s are spontaneous emission rates from
level i to j, G8 is a pump rate. For the two-level systemG is an
effective pump rate andg is the spontaneous emission rate on the
lasing transition. For both systems,k is the cavity decay rate andg
is the atom-field coupling strength.
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discussed. This nonlinear dependence of laser intensity with
pump rate for large pumps has also recently been investi-
gated by Koganov and Shuker@21#.

VI. CONCLUSIONS

We have examined the behavior of a single-atom laser
using both three- and four-level models, with particular em-
phasis on the behavior of the system as a function of the
spontaneous emission factorb. In the four-level system, asb
is increased, we find the system changes from a superthermal
emitter to a ‘‘smeared out’’ version of a semiclassical laser,
until we reach a cavity-QED regime where amplitude
squeezed light is emitted. There is no distinct laser threshold,
and several of the usual criteria for threshold fall at very
different pump values. For very small values ofb, the device
is essentially an light-emitting diode. For moderate values of
b near 0.2, we find behavior that is qualitatively the same as

in macroscopic lasers, with a change in slope of laser inten-
sity with pump and a peak in the Fano factor. However, the
pump rate at which the slope changes is distinct from the
pump rate where the Fano factor peaks. For values ofb on
the order of 0.5 or above, the essentially classical lasing be-
havior dissappears, and the device emits amplitude-squeezed
~or number-squeezed!light. We have revisited the turning
off of the three-level laser for large pumps, and interpreted
this in terms of a pump-dependentb, as well as the trapping
of the atomic population in the excited state killing off the
induced dipole moment. This is consistent with previous dis-
cussions in terms of dipole dephasing.@9#
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FIG. 8. ~a! Mean photon number vs pump rate forg/g51.414 andk/g50.1. ~b! Fano factor vs pump rate forg/g51.414 andk/g
50.1. ~c! Population inversion vs pump rate forg/g51.414 andk/g50.1.

3274 PRA 60JONES, GHOSE, CLEMENS, RICE, AND PEDROTTI



@1# H. Yokoyama and S. D. Brorson, J. Appl. Phys.66, 4801
~1988!.

@2# Advances in Atomic and Molecular Physics, edited by P. Ber-
man ~Academic, San Diego, CA, 1994!, Suppl. 2.

@3# Y. Yamamoto, S. Machida, and O. Nilsson, inCoherence, Am-
plification, and Quantum Effects in Semiconductor Lasers, ed-
ited by Y. Yamamoto~Wiley, New York, 1991!, Chap. 11.

@4# V. DiGirogio and M. O. Scully, Phys. Rev. A2, 1170~1970!.
@5# P. R. Rice and H. J. Carmichael, Phys. Rev. A50, 4318

~1994!.
@6# R. Jin, D. Boggavarpu, M. Sargent III, P. Meystre, H. M.

Gibbs, and G. Khitrova, Phys. Rev. A49, 4038~1994!.
@7# H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J.

Kimble, Opt. Lett.21, 1393~1996!.
@8# J. Ng and L. A. Orozco~unpublished!.
@9# Y. Mu and C. Savage, Phys. Rev. A46, 5944~1992!.

@10# T. Pellizari and H. Ritsch, J. Mod. Opt.41, 609~1994!.
@11# C. Ginzel, H.-J. Briegel, U. Martini, B. Englert, and A.

Schenzle, Phys. Rev. A48, 732~1993!.
@12# H. J. Carmichael,An Open Systems Approach To Quantum

Optics~Springer-Verlag, Berlin, 1993!; L. Tian and H. J. Car-

michael, Phys. Rev. A46, R6801~1992!.
@13# J. Dalibard, Y. Castin, and K. Molmer, Phys. Rev. Lett.68,

580 ~1992!; R. Dum, P. Zoller, and H. Ritsch, Phys. Rev. A
45, 4879~1992!. The interested reader may also wish to con-
sult Quantum Semiclassic. Opt.8, 205~1996!, a special issue
devoted to quantum trajectory theory.

@14# H. J. Wiseman, Ref.@13#.
@15# H. Haken, inLight and Matter, edited by L. Genzel, Handbuch

der Physik Vol. XXV/2c~Springer-Verlag, Berlin, 1970!.
@16# G. Björk, A. Karlsson, and Y. Yamamoto, Phys. Rev. A50,

1675 ~1994!.
@17# T. C. Ralph and C. M. Savage, Opt. Lett.16, 1113~1991!;

Phys. Rev. A44, 7809~1991!.
@18# H. Ritsch and P. Zoller, Phys. Rev. A45, 1881~1992!; H.

Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls,ibid. 44,
3361 ~1991!.

@19# A. M. Khazanov, G. A. Koganov, and E. P. Gordov, Phys.
Rev. A 42, 3065~1990!.

@20# D. L. Hart and T. A. B. Kennedy, Phys. Rev. A44, 4572
~1991!.

@21# G. Koganov and R. Shuker, Phys. Rev. A58, 1559~1998!.

PRA 60 3275PHOTON STATISTICS OF A SINGLE ATOM LASER


	Photon Statistics of a Single Atom Laser
	Recommended Citation

	tmp.1333978563.pdf.Yqfqk

