1,754 research outputs found

    Regeneration of grassy fynbos near Grahamstown (eastern Cape) after fire

    Get PDF
    The regeneration of grassy fynbos was studied for a period of 13months after the original vegetation had been totally destroyed by fire. Because the fire was preceded by a very dry spell and succeeded by months of high rainfall, regeneration proved to be rapid and the growth of some of the species was clearly related to rainfall. Species recolonization was very rapid and in a particular order. The classification of the species into regeneration type and phenological groups relates well to other studies on fire regeneration in the fynbos. After 13months over 100 species had returned to the area, the plants showing a progressive increase in height, basal and aerial cover

    Environmental Criminal Prosecutions: Simple Fixes for a Flawed System

    Get PDF

    Genomic selection using random regressions on known and latent environmental covariates

    Get PDF
    KEY MESSAGE: The integration of known and latent environmental covariates within a single-stage genomic selection approach provides breeders with an informative and practical framework to utilise genotype by environment interaction for prediction into current and future environments. ABSTRACT: This paper develops a single-stage genomic selection approach which integrates known and latent environmental covariates within a special factor analytic framework. The factor analytic linear mixed model of Smith et al. (2001) is an effective method for analysing multi-environment trial (MET) datasets, but has limited practicality since the underlying factors are latent so the modelled genotype by environment interaction (GEI) is observable, rather than predictable. The advantage of using random regressions on known environmental covariates, such as soil moisture and daily temperature, is that the modelled GEI becomes predictable. The integrated factor analytic linear mixed model (IFA-LMM) developed in this paper includes a model for predictable and observable GEI in terms of a joint set of known and latent environmental covariates. The IFA-LMM is demonstrated on a late-stage cotton breeding MET dataset from Bayer CropScience. The results show that the known covariates predominately capture crossover GEI and explain 34.4% of the overall genetic variance. The most notable covariates are maximum downward solar radiation (10.1%), average cloud cover (4.5%) and maximum temperature (4.0%). The latent covariates predominately capture non-crossover GEI and explain 40.5% of the overall genetic variance. The results also show that the average prediction accuracy of the IFA-LMM is [Formula: see text] higher than conventional random regression models for current environments and [Formula: see text] higher for future environments. The IFA-LMM is therefore an effective method for analysing MET datasets which also utilises crossover and non-crossover GEI for genomic prediction into current and future environments. This is becoming increasingly important with the emergence of rapidly changing environments and climate change. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00122-022-04186-w

    Genomic selection strategies for clonally propagated crops

    Get PDF
    For genomic selection (GS) in clonal breeding programs to be effective, parents should be selected based on genomic predicted cross-performance unless dominance is negligible. Genomic prediction of cross-performance enables efficient exploitation of the additive and dominance value simultaneously. Here, we compared different GS strategies for clonally propagated crops with diploid (-like) meiotic behavior, using strawberry as an example. We used stochastic simulation to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs included (1) a breeding program that introduced GS in the first clonal stage, and (2) two variations of a two-part breeding program with one and three crossing cycles per year, respectively. The two parent selection methods were (1) parent selection based on genomic estimated breeding values (GEBVs) and (2) parent selection based on genomic predicted cross-performance (GPCP). Selection of parents based on GPCP produced faster genetic gain than selection of parents based on GEBVs because it reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing cycles per year using GPCP always produced the most genetic gain unless dominance was negligible. We conclude that (1) in clonal breeding programs with GS, parents should be selected based on GPCP, and (2) a two-part breeding program with parent selection based on GPCP to rapidly drive population improvement has great potential to improve breeding clonally propagated crops

    Maximizing the potential of multi-parental crop populations.

    Get PDF
    Most agriculturally significant crop traits are quantitatively inherited which limits the ease and efficiency of trait dissection. Multi-parent populations overcome the limitations of traditional trait mapping and offer new potential to accurately define the genetic basis of complex crop traits. The increasing popularity and use of nested association mapping (NAM) and multi-parent advanced generation intercross (MAGIC) populations raises questions about the optimal design and allocation of resources in their creation. In this paper we review strategies for the creation of multi-parent populations and describe two complementary in silico studies addressing the design and construction of NAM and MAGIC populations. The first simulates the selection of diverse founder parents and the second the influence of multi-parent crossing schemes (and number of founders) on haplotype creation and diversity. We present and apply two open software resources to simulate alternate strategies for the development of multi-parent populations

    Evaluation of stroke early supported discharge services. Collaborative Leadership in Applied Health Research and Care (CLAHRC), Nottinghamshire, Derbyshire and Lincolnshire, UK

    Get PDF
    A Cochrane systematic review showed that Early Supported Discharge (ESD) following a stroke is both a safe and cost-effective alternative to continued in-patient management. Currently it is unclear whether the health and cost benefits established in the research literature still apply when ESD services are implemented in practice. Our study aims to evaluate the implementation of stroke ESD across three counties in the UK (Nottinghamshire, Derbyshire, Lincolnshire), and offers an innovative approach to facilitate the translation of stroke rehabilitation research into clinical practice
    corecore