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Abstract
Key message  For genomic selection in clonally propagated crops with diploid (-like) meiotic behavior to be effective, 
crossing parents should be selected based on genomic predicted cross-performance unless dominance is negligible.
Abstract  For genomic selection (GS) in clonal breeding programs to be effective, parents should be selected based on 
genomic predicted cross-performance unless dominance is negligible. Genomic prediction of cross-performance enables 
efficient exploitation of the additive and dominance value simultaneously. Here, we compared different GS strategies for 
clonally propagated crops with diploid (-like) meiotic behavior, using strawberry as an example. We used stochastic simula-
tion to evaluate six combinations of three breeding programs and two parent selection methods. The three breeding programs 
included (1) a breeding program that introduced GS in the first clonal stage, and (2) two variations of a two-part breeding 
program with one and three crossing cycles per year, respectively. The two parent selection methods were (1) parent selection 
based on genomic estimated breeding values (GEBVs) and (2) parent selection based on genomic predicted cross-performance 
(GPCP). Selection of parents based on GPCP produced faster genetic gain than selection of parents based on GEBVs because 
it reduced inbreeding when the dominance degree increased. The two-part breeding programs with one and three crossing 
cycles per year using GPCP always produced the most genetic gain unless dominance was negligible. We conclude that (1) 
in clonal breeding programs with GS, parents should be selected based on GPCP, and (2) a two-part breeding program with 
parent selection based on GPCP to rapidly drive population improvement has great potential to improve breeding clonally 
propagated crops.

Introduction

In this paper, we show that, for genomic selection (GS) in 
clonally propagated crops with diploid (-like) meiotic behav-
ior to be effective, crossing parents should be selected based 
on genomic predicted cross-performance (GPCP), unless 
dominance is negligible. In most plant and animal breed-
ing programs that apply genomic selection (GS), new par-
ents are selected based on their genomic estimated breeding 
value (e.g., Meuwissen et al. 2016; Crossa et al. 2017). The 

genomic estimated breeding value (commonly referred to 
as GEBV) is the sum of the average effects of an allele pre-
dicted for all marker alleles of a genotype. Dominance devia-
tion, which cannot be directly passed on to the progeny, is 
not considered in the GEBV (Goddard 2009; Su et al. 2012). 
Selection based on the GEBV aids breeders in increasing 
the frequency of alleles with beneficial additive genetic 
effects in a breeding population. As a result, heterozygosity 
is reduced. Although selection for the GEBV will increase 
the additive value over time, it may lead to a reduction of 
the dominance value, unless dominance is negligible. In the 
long term, using the GEBV to select parents in breeding 
programs which deliver outbred varieties, such as in clonal 
plant breeding programs, might not be a suitable method to 
maximize the total genetic value of the breeding population 
in a sustainable fashion.

Many major food crops, including nearly all types of fruit 
and all important roots and tubers, are clonally propagated 
(Grüneberg et al. 2009; Bradshaw 2016). In clonal breeding 
programs, new genotypes are created by sexual reproduction 
and multiplied through clonal propagation (Bisognin 2011; 
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Gemenet and Khan 2017). Breeders use multiple stages of 
testing to identify the best genotypes in their breeding popu-
lation. Genotypes are first tested as seedlings in unreplicated 
trials. Clonal propagation is then used to create genetically 
identical plants from selected seedlings. As the testing pro-
gresses, the number of genotypes is successively reduced 
and those remaining are tested more intensively across mul-
tiple environments and years. The selected genotypes are 
used to achieve two specific objectives:

i)	 Generation of an improved offspring population via 
recombination of selected parents.

ii)	 Release of the best genotypes as improved clonal varie-
ties.

The time from recombination to variety release spans sev-
eral years. Traditionally, selection is based on phenotypic 
performance and the next generation’s parents are selected 
in the later stages of a breeding program, which leads to long 
generation intervals (Bradshaw 2016).

Genomic selection offers great potential to optimize the 
identification of the best clones for variety development, and 
the selection of crossing parents. Genomic selection exploits 
associations between genomic markers and phenotypes 
to predict the value of genotypes based on their genomic 
marker profiles (Goddard and Hayes 2007). The implemen-
tation of GS provides three key advantages:

i)	 The generation interval can be reduced since parents can 
be selected as soon as they are genotyped.

ii)	 The selection accuracy can be increased, especially in 
early testing stages of a breeding program where the 
number of locations and replications is low.

iii)	 The selection intensity can be increased, for example, by 
genotyping and predicting more genotypes than could be 
tested in the field.

These advantages allow for several opportunities to 
reorganize conventional breeding programs. For exam-
ple, Gaynor et al. (2017) presented an inbred line two-part 
breeding program employing GS, which reorganized a plant 
breeding program into:

i)	 A population improvement component to develop 
improved germplasm through rapid recurrent GS, and

ii)	 A product development component to identify genotypes 
for variety development.

In stochastic simulation, the two-part breeding program 
doubled the rate of genetic gain relative to a conventional 
breeding program without increasing cost.

In a clonal breeding program, the reorganization in two 
parts combined with GS would allow breeders to minimize 

the generation interval and could substantially increase 
selection accuracy at the seedling stage.

The generation interval could be reduced to one year or 
even less since parents can be selected as soon as the seed-
lings are genotyped. For example, the generation interval in 
conventional strawberry breeding programs can be four to 
five years due to the time it takes to generate sufficient phe-
notypic records to accurately assess a genotype. Genomic 
selection applied in the seedling stage could result in up to 
five times the genetic gain achieved in a conventional straw-
berry breeding program in the same amount of time if the 
three other components in the breeder’s equation (i.e., selec-
tion intensity, diversity, and selection accuracy) remained 
constant.

The selection accuracy in the seedling stage could be 
increased since GS enables selection of seedlings based on 
their predicted performance as clones instead of their phe-
notypic performance per se. This is achieved when the GS 
model is trained using clonal phenotypes. In clonal breeding 
programs, the seedling stage represents a severe genetic bot-
tleneck; in conventional strawberry breeding programs, only 
a few hundred genotypes among 10,000–20,000 unreplicated 
seedlings are advanced to the next stage. Selection accu-
racy is extremely low at the seedling stage for three reasons 
(Grüneberg et al. 2009), which are:

i)	 Seedlings and clones derived from those seedlings can 
differ in their morphology and performance although 
they are genotypically identical.

ii)	 Seedlings and clones are often grown in different envi-
ronments. For example, in European strawberry breed-
ing programs, seedlings are grown in matted rows on the 
soil and clones are grown as single-pot plants on highly 
controlled tabletop systems.

iii)	 Single plant assessment of mostly general appearance 
and/or a few key traits in the seedling stage shows low 
heritability and has a low correlation with the breeding 
goal trait (e.g., yield).

Replacing phenotypic selection in the seedling stage with 
GS based on clonal phenotypes removes all three obstacles 
in one step. It also allows for early prediction of traits that 
are typically not evaluated until later stages of the breeding 
program, e.g., flavor and shelf life.

In clonally propagated crops, however, dominance may 
affect the performance of breeding programs which imple-
ment GS. The genotypes in clonally propagated crops are 
typically heterozygous. The genetic value of heterozygous 
genotypes is a function of additive and non-additive gene 
action (Falconer and Mackay 1996). If, for the sake of sim-
plicity, epistasis is ignored, the non-additive gene action 
is entirely defined by dominance. While the differences in 
the genetic values between genotypes are based on both 
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additive and non-additive genetic effects, it is the addi-
tive genetic component which defines long-term genetic 
gain in a breeding population (Bradshaw 2016). Hence, 
breeders face the challenging task of having to increase the 
additive value over time while simultaneously maintaining 
the dominance value via selection and recombination of 
parents. The relative importance of these two targets is a 
function of the dominance degree at the loci affecting the 
trait under consideration, which is mostly unknown. In 
strawberry, non-additive effects have been shown to be 
important for numerous yield component traits, quality 
traits, and agronomic traits (Shaw et al. 1987; Shaw 1990; 
Whitaker et al. 2012; Zingaretti et al. 2021), and various 
experiments have demonstrated substantial reductions in 
mean performance due to inbreeding depression (Com-
stock et al. 1958; Niemirowicz-Szczytt 1989; Shaw 1995, 
1997; Rho et al. 2012). In cassava, Wolfe et al. (2021) 
reported significant inbreeding depression for yield using 
a marker-based directional dominance model. Their results 
were in accordance with previous studies on inbreeding 
depression (Pujol and Mckey 2006; Rojas et al. 2009; de 
Freitas et al. 2016; Kawuki et al. 2011).

We hypothesize that genomic prediction of cross-per-
formance (GPCP) is a better method to select parents in a 
clonal breeding program than using the GEBV. When GPCP 
is used, pairs of parents are selected based on the expectation 
of the total genetic value of their progeny. Genomic predic-
tion of cross-performance could allow breeders to simultane-
ously increase the frequency of alleles with beneficial addi-
tive effects and maintain heterozygosity in the population 
to exploit dominance effects. In the long term, using GPCP 
to select parents in a clonal breeding program could be an 
efficient method to sustainably maximize the total genetic 
value of the breeding population.

To test our hypothesis, we used stochastic simulation to 
evaluate three breeding programs and two parent selection 
methods to deploy GS in clonally propagated crops with 
diploid (-like) meiotic behavior under different dominance 
degrees. Strawberry was used as an example.

The three breeding programs included:

i)	 A breeding program that introduced GS in the first 
clonal stage, and

ii)	 Two variations of a two-part breeding program (Gaynor 
et al. 2017) with one and three crossing cycles per year, 
respectively.

The two parent selection methods were:

i)	 Selection of parents based on genomic estimated breed-
ing values (GEBV), and

ii)	 Selection of parents based on genomic predicted cross-
performance (GPCP).

The six combinations of breeding program and parent 
selection method were compared to a conventional breeding 
program using phenotypic selection. The structure and key 
simulation parameters of the conventional breeding program 
were guided by a commercial strawberry breeding program 
in the UK.

We observed that the breeding programs using GPCP to 
select parents produced faster genetic gain than parent selec-
tion based on GEBVs unless dominance was negligible. The 
highest rates of genetic gain were generated by the two-part 
breeding programs with parent selection based on GPCP.

Materials and methods

Stochastic simulation was used to evaluate six combinations 
of three breeding programs and two parent selection meth-
ods to deploy GS in clonally propagated crops with diploid 
(-like) meiotic behavior. We simulated a quantitative trait 
(such as yield) under four different dominance degrees and 
evaluated the long-term efficacy of the six combinations of 
breeding program and parent selection method compared to 
a conventional breeding program using phenotypic selection.

The material and methods are subdivided into two sec-
tions. The first section describes the simulation of the 
founder genotype population, and the second section 
describes the simulation of the breeding programs.

The simulation of the founder genotype population 
comprised:

i)	 Genome simulation: a heterozygous genome sequence 
was simulated for a hypothetical diploid and clonally 
propagated crop species.

ii)	 Simulation of founder genotypes: the simulated genome 
sequences were used to generate a base population of 60 
founder genotypes.

iii)	 Simulation of genetic values: a single quantitative trait 
was simulated for all founder genotypes by summing 
the biological additive and dominance effects at 20,000 
quantitative trait nucleotides. Four different dominance 
degrees were simulated including 0, 0.1, 0.3 and 0.9.

iv)	 Simulation of phenotypes: phenotypes were simulated 
by adding a randomly sampled error to the total genetic 
value of a genotype.

The simulation of the breeding programs comprised:

i)	 Recent (burn-in) breeding phase: a conventional pheno-
typic selection breeding program for clonally propagated 
crops was simulated for a period of 20 years to provide 
a common starting point for the future breeding phase.

ii)	 Future breeding phase: six combinations of three breed-
ing programs and two parent selection methods to 
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deploy GS in clonally propagated crops were simulated 
and compared to the conventional breeding program for 
20 years. In detail, we describe:

a.	 The GS model.
b.	 The two parent selection methods including par-

ent selection based on GEBVs and parent selection 
based on GPCP.

c.	 The three breeding programs with GS including a 
breeding program which implemented GS in the first 
clonal stage, and two variations of a two-part breed-
ing program which implemented GS in the seedling 
stage with one and three crossing cycles per year, 
respectively.

d.	 Comparison of the breeding programs based on 
parameters measured in the first clonal stage.

Simulation of the founder genotype population

Genome simulation

A heterozygous genome sequence was simulated for each 
genotype of a hypothetical diploid and clonally propagated 
crop species. The genome consisted of 20 chromosome pairs 
with a physical length of 108 base pairs and a genetic length 
of 100 centimorgans (cM), resulting in a total genetic length 
of 2000 cM comparable to that of the Fragaria × ananassa 
genome (Sargent et al. 2009, 2016; van Dijk et al. 2014; 
Bassil et al. 2015). The chromosome sequences were gener-
ated using the Markovian coalescent simulator (MaCS; Chen 
et al. 2009), which was deployed using AlphaSimR version 
0.11.0 (Gaynor et al. 2019). Recombination rate was derived 
as the ratio between genetic length (linkage map length) and 
physical genome length (genome sequence) in base pairs 
(i.e., 100 cM/108 base pairs = 10–8). The per-site mutation 
rate was set to 2.5 × 10–8 mutations per base pair. Effective 
population size (Ne) was set to 100 and resulted from a simu-
lated coalescence process with an effective population size 
of 500, 1250, 1500, 3500, 6000, 12,000 and 100,000 set for 
100, 500, 1000, 5000, 10,000, and 100,000 generations ago. 
Successive reduction of the effective population size was 
used to reflect a progressive restriction of genetic variance 
due to natural and artificial selection. The purpose of the 
coalescence process was to create linkage disequilibrium in 
the founder population (Fig. S1).

Simulation of founder genotypes

The simulated genome sequences were used to gener-
ate a base population of 60 diploid founder genotypes 
in Hardy–Weinberg equilibrium. These genotypes were 
formed by randomly sampling 20 chromosome pairs per 

genotype and served as parents in the burn-in phase. A 
set of 1000 biallelic quantitative trait nucleotides (QTN) 
and 1000 single nucleotide polymorphisms (SNP) were 
randomly sampled along each chromosome to simulate a 
quantitative trait that was controlled by 20,000 QTN and a 
SNP marker array with 20,000 markers. We chose 20,000 
QTN considering the high number of 108,087 protein-cod-
ing genes annotated to the octoploid Fragaria × ananassa 
reference genome (Edger et al. 2019).

Simulation of genetic values

Genetic values for a single quantitative trait, such as yield, 
were simulated by summing the genetic effects at the 
20,000 QTN. Three types of biological QTN effects were 
modeled to simulate genetic values: additive effects, dom-
inance effects and genotype-by-year (G × Y) interaction 
effects. Under the AlphaSimR framework, this is referred 
to as an ADG trait. We will give only a summary of the 
modeling procedure, while a detailed description can be 
found in the vignette of the package (Gaynor et al. 2021).

Biological additive effects (a) were sampled from a 
standard normal distribution and scaled to obtain an addi-
tive variance of �2

A
= 1 in the founder population. Locus-

specific genotype-by-year interaction effects ( g(x,w) ) were 
modeled using an environmental covariate and a genotype-
specific slope:

The environmental covariate ( w ) represented the ran-
dom environmental component of the G × Y interaction 
and was sampled for each year of the simulation from a 
standard normal distribution. The genotype-specific slope 
( b(x) ) represented the genetic component of the G × Y 
interaction (sensitivity to changes in the environment), 
with x being the genotype dosage (number of copies of the 
alternative allele) at a locus. The effects for the genotype-
specific slope were sampled from a standard normal dis-
tribution and scaled to obtain a G × Y interaction variance 
of �2

G×Y
= 2�2

A
= 2 in the founder population.

Biological dominance effects (d) were calculated 
by multiplying the absolute value of a QTN’s additive 
effect ( ai ) by a locus-specific dominance degree ( �i ). A 
dominance degree of 0 represents no dominance, and a 
dominance degree of 1 represents complete dominance. 
Dominance degrees between 0 and 1 correspond to partial 
dominance, and values above 1 correspond to overdomi-
nance. Dominance degrees were sampled from a normal 
distribution with mean dominance coefficient �� and vari-
ance �2

�
:

g(x,w) = w ∗ b(x)
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The dominance effect of QTN i was calculated as:

Three levels of average dominance degrees, 0.1, 0.3 
and 0.9, were used to simulate overall positive directional 
dominance and were compared to zero dominance (i.e., 
additive genetic control only). The variance �2

�
 was set 

to 0.2. Because of the random sampling process, nega-
tive dominance degrees at individual loci were possible, 
resulting in negative dominance interaction effects. The 
dominance variance ( �2

D
) was then calculated based on the 

simulated dominance effects. Since no initial covariance 
between �2

A
 and �2

D
 was simulated, the total genetic vari-

ance in the founder population was �2
G
= �2

A
+ �2

D
.

Simulation of phenotypes

Phenotypes were generated by adding random error to 
the genetic values. The random error was sampled from a 
normal distribution with mean zero and an error variance 
�2
e
 defined by the target level of heritability at each test-

ing stage with reference to �2
G

 in the founder population. 
Entry-mean narrow-sense heritabilities ( h2 ) were set to 
0.1 in the seedling stage and 0.3 in the first clonal stage. 
Entry-mean narrow-sense heritabilities in later stages 
increased due to an increased number of replications per 
genotype (Table 1). Narrow-sense heritabilities were cal-
culated using the following equation:

 with n being the number of replications per genotype and 
all variance components as defined above.

�i ∼ N
(
�� , �

2
�

)

di =

{
0

�i ∗
|
|ai

|
|

if QTN is homozygous

if QTN is heterozygous

h2 =
�2
A

�2
P

=
�2
A

�2
A
+ �2

D
+ �2

e

/
n

Simulation of the breeding programs

Recent (burn‑in) breeding phase

A conventional phenotypic selection breeding program for 
clonally propagated crops was simulated for a period of 
20 years (burn-in) to provide a common starting point for 
the future breeding phase. In combination with the coales-
cent process, the burn-in phase also served the build-up of 
linkage disequilibrium in the breeding population (Fig. S1). 
Each year of the conventional breeding program started with 
a set of 60 parents planted together in a crossing block. The 
parents were crossed to generate seedlings, followed by a 
six-year evaluation period that involved six stages of test-
ing. Selection of parents and selection of the best clones at 
each stage was based on phenotypes. The structure and key 
parameter values of the conventional breeding program were 
guided by a commercial strawberry breeding program in the 
UK. Figure 1 shows the structure of the conventional breed-
ing program, and Table 1 presents the number of genotypes 
and replications tested at each stage.

To fill each stage of the simulated breeding pipeline 
with breeding germplasm prior to the burn-in phase, six 
cycles of crossing, selection, and advancement of the 
best genotypes were carried out. Each of these six cycles 

Table 1   Number of tested genotypes, replications (Reps), and nar-
row-sense heritabilities used in the conventional breeding program

*Entry-mean values based on the �2

A
∶ �2

P
 ratio in the founder popula-

tion.

Year Stage Tested genotypes Reps Narrow-sense 
heritability (h2)*

1 Seedling stage 15,000 1 0.10
2 Clonal stage 1 1000 1 0.30
3 Clonal stage 2 100 2 0.46
4 Clonal stage 3 20 4 0.63
5 Clonal stage 4 5 6 0.72
6 Clonal stage 5 5 6 0.72

Fig. 1   Schematic overview of the conventional breeding program 
and the conventional breeding program with genomic selection. The 
conventional breeding program (Conv) was used in the burn-in breed-
ing phase and served as a control in the future breeding phase. In the 
conventional breeding program, parents were selected in clonal stages 
2–5. The conventional breeding program with genomic selection 
reduced the generation interval to two years by selecting parents in 
clonal stage 1 based on either genomic estimated breeding values or 
genomic predicted cross-performance. The genotypes in clonal stage 
1 served as training population
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started with crossing the same 60 founder genotypes to 
generate 150 F1-families with 100 seedlings each, using 
random sampling of bi-parental crosses without replace-
ment. The best genotypes were then advanced one stage 
per cycle using phenotypic selection until each stage was 
filled with a set of genotypes. Replacement of parents was 
omitted to ensure that total genetic variance in the founder 
genotypes remained unchanged until the burn-in phase 
started. The number of founder genotypes was chosen in 
consultation with strawberry breeders under consideration 
of the historic origin of their breeding germplasm. Geno-
type-by-year interaction was ignored during this phase to 
achieve target-level heritabilities at the beginning of the 
burn-in phase as defined in Table 1.

In the burn-in phase, selection of parents was carried 
out in the clonal stages 2, 3, 4 and 5. Each year, the 30 
genotypes in the crossing block with the poorest per se 
performance were replaced by new parents. At first, all 30 
genotypes in the clonal stages 3, 4 and 5 were added to 
the crossing block as new parents if they were not already 
included. Then, remaining free slots in the crossing block 
were filled with the best genotypes from the clonal stage 2.

Future breeding phase

The future breeding phase was used to evaluate six combina-
tions of three breeding programs and two parent selection 
methods to deploy GS in clonally propagated crops with dip-
loid (-like) meiotic behavior. These six combinations were 
simulated for an additional 20 years of breeding and com-
pared to the conventional breeding program. The three GS 
breeding programs included a conventional breeding pro-
gram with GS introduced in clonal stage 1 (Fig. 1), and two 
variations of a two-part breeding program which introduced 
GS in the seedling stage with one and three crossing cycles 
per year, respectively (Fig. 2). The two parent selection 
methods were selection of new parents based on genomic 
estimated breeding values (GEBVs), and selection of new 
parents based on genomic predicted cross-performance 
(GPCP). To obtain approximately equal annual operating 
costs, the number of seedlings was reduced in the breeding 
programs with GS to compensate for the additional geno-
typing costs. Estimated costs were set to $20 for phenotypic 
evaluation and $25 for array genotyping per genotype after 
consultation with strawberry breeders. In the two-part breed-
ing programs, all seedlings were genotyped to completely 

Fig. 2   Schematic overview of 
the two-part breeding program. 
The two-part breeding program 
reorganized the conventional 
breeding program into (1) 
a population improvement 
component to develop improved 
germplasm through rapid 
recurrent genomic selection; 
and (2) a product development 
component to identify the 
best-performing genotypes. The 
population improvement com-
ponent allows to have multiple 
cycles of crossing and selection 
per year before the seedlings 
are advanced to the product 
development component based 
on their genomic estimated 
genetic values. New parents 
for population improvement 
were selected based on either 
genomic estimated breeding 
values or genomic predicted 
cross-performance
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replace phenotypic selection in the seedling stage with GS. 
Table 2 presents the annual costs for the simulated breeding 
programs.

Genomic selection model

Genomic predictions were calculated using the following 
genome-wide regression model presented by Xiang et al. 
(2016):

where y is a vector of phenotypic entry means, �� represents 
years modeled as fixed effects, and fb models directional 
dominance, with f  modeling genomic inbreeding and b 
being the effect of genomic inbreeding on performance. The 
genomic inbreeding coefficient of each individual ( f  ) was 
calculated as fraction of homozygous marker loci among all 
SNP markers, and b can be interpreted as genomic inbreed-
ing depression. The vector a contains the “biological” addi-
tive effects, and d* is a vector of the dominance effects not 
captured by fb . Matrix � represents the allele dosage (0, 1, 
2) of the alternative allele at each marker locus, matrix � 
is coded 0 for homozygous genotypes and 1 for heterozy-
gous genotypes, and e is a vector of residual effects. Random 
effects a, d*, and e were assumed to be normally distributed 
with mean zero and variance �2

a
 , �2

d∗
 , and �2

e
 , respectively.

The effect of b was divided by the number of SNP mark-
ers and added to d* to obtain the vector of dominance effects 
d = d* +

b

20,000
 . Additive (a) and dominance (d) effects were 

then used to calculate the average effect of an allele for each 
SNP marker (Varona et al. 2018), and substitution effects 
were summed to calculate GEBVs. To obtain genomic esti-
mated genetic values (GEGV), the additive and dominance 
effects were summed. Models were solved in AlphaSimR, 
using the package’s built-in linear mixed model solver and 
REML variance component estimation.

The initial training population to train the GS model at 
the start of the future breeding phase consisted of all the 
genotypes from clonal stage 1 of the last three years of 
the burn-in phase. The training population included 3000 

y = �� + fb + �a +�d* + e

genotypes and 3220 phenotypic records. In every year of 
the future breeding phase, 1000 new genotypes from clonal 
stage 1 were added to the training population.

Parent selection methods

Two parent selection methods were compared for the selec-
tion and crossing of parents in the two breeding programs 
with GS. The first parent selection method will be referred to 
as parent selection based on genomic estimated breeding val-
ues (GEBVs). This method represented a conventional “good 
by good” crossing scheme. The genotypes with the highest 
GEBVs were selected and used to completely replace the 
previous year’s crossing block. Crossing was implemented 
as random sampling of bi-parental combinations without 
replacement. The second parent selection method will be 
referred to as parent selection based on genomic predicted 
cross-performance (GPCP). This method implemented sys-
tematic selection of bi-parental crosses. The best bi-parental 
crosses were selected based on the predicted mean genetic 
values of the F1 of a cross. In this way, the average amount 
of heterosis predicted for the F1 due to complementarity 
between two parents was directly considered in the parent 
selection process. The mean genetic value of the F1 of a 
cross was predicted based on the equation given by Falconer 
and Mackay (1996):

 with MF1
 being the predicted mean genotypic value of the 

F1, ai and di being the additive and dominance effects of 
the n = 20,000 SNP markers, pi and qi being the frequen-
cies (or dosages) of the two marker alleles measured in 
one of the two crossing parents, p′

i
 and q′

i
 being the marker 

allele frequencies (or dosages) in the second parent, and 
yi representing the difference in allele frequency (or dos-
age) between the two parents at the ith marker locus, so that 
yi = pi − p�

i
= q�

i
− qi . The concept of the crossing block was 

abandoned, and no fixed number of parents was selected 
when GPCP was used.

MF1
=

n∑

i=1

[
ai
(
pi − qi − yi

)
+ di

[
2piqi + yi

(
pi − qi

)]]

Table 2   Number of crosses per year, seedlings generated  per cross, 
total number of seedlings planted, number of phenotyped seedlings, 
number of genotyped individuals, and annual costs of the simulated 

breeding programs (Conv, conventional breeding program; Conv GS, 
conventional breeding program with genomic selection; 2Part, two-
part breeding program)

To compensate for genotyping costs, the number of seedlings was reduced in the breeding programs with GS

Breeding Program Crosses/year Seedlings/cross Seedlings planted Seedlings pheno-
typed

Genotyped indi-
viduals

Costs ($)

Conv 150 100 15,000 15,000 0 300,000
Conv GS 150 91 13,650 13,650 1000 298,000
2Part (1 cycle) 130 84 11,960 0 11,960 299,000
2Part (3 cycles) 100 × 3 40 × 3 12,000 0 12,000 300,000
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Conventional breeding program with genomic selection

The conventional breeding program with genomic selec-
tion introduced GS in clonal stage 1. The structure of the 
conventional breeding program with genomic selection 
is shown in Fig. 1. All 1000 genotypes in clonal stage 1 
were genotyped to serve as the training population for the 
GS model. The phenotypic information to train the GS 
model was obtained from clonal stage 1 to stage 5, so that 
selected genotypes were represented with up to five sepa-
rate measurements in the training population due to several 
years of testing. The model was updated on a yearly basis. 
When parents were selected based on GEBVs, in each 
year the best 60 genotypes in clonal stage 1 were used to 
replace the complete crossing block. When parents were 
selected based on GPCP, bi-parental cross-performance 
was predicted for all pairwise cross-combinations in clonal 
stage 1. The generation interval was two years. Genomic 
selection was also used to advance the best 100 clones 
from clonal stage 1 to stage 2 based on their GEGV.

Two‑part breeding programs

The two-part breeding programs reorganized the conven-
tional breeding program into a population improvement 
component to develop improved germplasm through rapid 
recurrent GS, and a product development component to 
identify genotypes for variety development. Two varia-
tions of the two-part breeding program with one and three 
crossing cycles per year, respectively, were simulated. The 
structure of the two-part breeding programs is shown in 
Fig. 2. Genomic selection was introduced in the seedling 
stage. All seedlings were genotyped and phenotypic selec-
tion in the seedling stage was completely replaced by GS. 
The 1000 genotypes in clonal stage 1 served as training 
population for the GS model. The phenotypic informa-
tion to train the GS model was obtained from clonal stage 
1 to stage 5, and the model was updated on a yearly basis. 
Thus, a key feature of the two-part breeding programs 
is that seedlings were selected using a GS model that 
was trained with phenotypic records from clones. When 
parents were selected based on GEBVs, in each cross-
ing cycle, the best 60 seedlings were used to replace the 
whole crossing block. When parents were selected based 
on GPCP, bi-parental cross-performance was predicted for 
all pairwise seedling cross-combinations. The generation 
interval was one year with one crossing cycle per year, and 
1/3 year with 3 crossing cycles per year. Genomic selec-
tion was also used to advance the best 1000 seedlings to 
clonal stage 1 and the best 100 clones from clonal stage 1 
to stage 2 based on their GEGV.

Comparison of the breeding programs

The performance of the six combinations of three breeding 
programs and two parent selection methods in comparison 
with the conventional breeding program was evaluated by 
measuring the mean total genetic value in clonal stage 1. 
Each evaluation included ten simulation runs. The mean 
total genetic value was measured in clonal stage 1 for two 
reasons:

i)	 It was the earliest stage in which clones were evaluated.
ii)	 The general trends observed for genetic gain in clonal 

stage 1 were representative of genetic gain in the seed-
ling stage and genetic gain in later stages of the breeding 
programs.

The additive value, the dominance value and genomic 
inbreeding over time were also measured for the breed-
ing population in clonal stage 1. Genomic inbreeding was 
measured as the percentage increase in homozygosity at all 
quantitative trait nucleotides relative to the average homozy-
gosity observed in the founder population. Furthermore, the 
breeding programs were compared for total genetic variance, 
additive variance and dominance variance over time, and 
results are shown in supplementary material (Fig. S8-S10).

Prediction accuracy (Pearson correlation coefficient) was 
measured in two different ways:

i)	 In the three breeding programs with GS, prediction 
accuracy was assessed as the accuracy of the parent 
selection method (Tab. S2).

ii)	 In all breeding programs, prediction accuracy was 
assessed as the prediction accuracy of the total genetic 
value in the seedling stage (Tab. S3).

Results

The results show that for GS in clonally propagated crops 
with diploid (-like) meiotic behavior to be effective, 
parents should be selected based on genomic predicted 
cross-performance (GPCP) unless dominance is negligi-
ble. Selection of parents based on GPCP produced faster 
genetic gain than selection based on GEBVs when the 
dominance degree was greater than zero (Fig. 3). As the 
dominance degree increased, selection of parents based 
on GPCP also produced increasingly more genetic gain 
than selection based on GEBVs. The two variations of the 
two-part breeding program with GPCP always produced 
the most genetic gain unless dominance was negligible. 
The breeding programs with selection of parents based 
on GEBVs, on the other hand, produced negative genetic 
gain when the dominance degree was high. GPCP was 
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advantageous over selection of parents based on GEBVs 
because it reduced inbreeding in the breeding popula-
tion when the dominance degree increased (Fig. 4). This 
enabled better exploitation of the additive value and the 
dominance value simultaneously, which became more 
important as the dominance degree increased (Fig. 5). 
Additionally, GPCP became more accurate, and selection 

of parents based on GEBVs became less accurate at higher 
dominance degrees (Fig. 6).

Genetic gain

Selection of parents based on GPCP produced faster genetic 
gain than selection based on GEBVs unless dominance was 

Fig. 3   Genetic gain of the simulated breeding programs under dif-
ferent dominance degrees (d/a). In each panel, genetic gain is plot-
ted as the change in the mean genetic value over time in stage 1 for 
the entire burn-in breeding phase and the future breeding phase. Each 
line shows the mean genetic value for the 10 simulated replications, 
and the shading shows the 95% confidence intervals. The different 
types of breeding program are shown in different colors. The conven-
tional breeding program (Conv) is gray. The conventional breeding 

program with genomic selection (Conv GS) is yellow. The two-part 
breeding program with genomic selection (2Part) is shown in blue 
with one crossing cycle per year and in purple with three crossing 
cycles per year. The two types of parent selection were shown in dif-
ferent line-styles. Selection based on genomic estimated breeding 
values (GEBV) is shown by continuous lines. Selection based on 
genomic prediction of cross-performance (GPCP) is shown by dashed 
lines

Fig. 4   Genomic inbreeding coefficient of the simulated breeding 
programs under different dominance degrees (d/a). In each panel, 
the genomic inbreeding coefficient is plotted in stage 1 for the entire 
burn-in breeding phase and the future breeding phase. Each line 
shows the mean genomic inbreeding coefficient for the 10 simulated 
replications. The different types of breeding program are shown in 
different colors. The conventional breeding program (Conv) is gray. 
The conventional breeding program with genomic selection (Conv 

GS) is yellow. The two-part breeding program with genomic selection 
(2Part) is shown in blue with one crossing cycle per year and in pur-
ple with three crossing cycles per year. The two types of parent selec-
tion were shown in different line-styles. Selection based on genomic 
estimated breeding values (GEBV) is shown by continuous lines. 
Selection based on genomic prediction of cross-performance (GPCP) 
is shown by dashed lines
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negligible. This is shown in Fig. 3, which plots genetic gain 
as the mean genetic value against time in clonal stage 1. 
The four panels show genetic gain under the different simu-
lated dominance degrees for four types of breeding programs 
and two types of parent selection. As the dominance degree 
increased, GPCP produced increasingly more genetic gain 
than selection of parents based on GEBVs.

The three breeding programs with GPCP always produced 
more genetic gain than the conventional breeding program. 
The two variations of the two-part breeding program with 
GPCP always produced the most genetic gain unless domi-
nance was negligible (Fig. 3). When the dominance degree 
was 0.1, the two-part breeding program gave 2.8 times the 
genetic gain of the conventional breeding program with 

one crossing cycle per year, and more than three times the 
genetic gain with three crossing cycles per year. When the 
dominance degree was 0.9, it gave almost seven times the 
genetic gain of the conventional breeding program with one 
crossing cycle per year, and more than five times the genetic 
gain with three crossing cycles per year.

Figure 3 also shows that the two-part breeding program 
with parent selection based on GEBVs and three crossing 
cycles per year generated the most genetic gain when the 
dominance degree was zero. However, after a sharp increase 
in the first few years, the rate of genetic gain drastically 
decreased and started to approach a plateau. The two-part 
breeding program with parent selection based on GEBVs 
and one crossing cycle per year generated the second most 
genetic gain. In the first few years, it showed a lower rate 
of genetic gain than the two-part breeding programs with 
GPCP. In the long term, however, both two-part breeding 
programs with GPCP started to plateau and were outper-
formed by the two-part breeding program with parent selec-
tion based on GEBVs and one crossing cycle per year.

Figure  3 also shows that selection of parents using 
GEBVs produced negative genetic gain over time when the 

Fig. 5   Additive values and the dominance values of the simulated 
breeding programs under different dominance degrees (d/a). In each 
of the three top panels, the additive values are plotted in stage 1 for 
the future breeding phase. The three bottom panels plot the domi-
nance values. Each line shows the mean value for the 10 simulated 
replications. The different types of breeding program are shown in 
different colors. The conventional breeding program (Conv) is gray. 
The conventional breeding program with genomic selection (Conv 
GS) is yellow. The two-part breeding program with genomic selection 
(2Part) is shown in blue with one crossing cycle per year and in pur-
ple with three crossing cycles per year. The two types of parent selec-
tion were shown in different line-styles. Selection based on genomic 
estimated breeding values (GEBV) is shown by continuous lines. 
Selection based on genomic prediction of cross-performance (GPCP) 
is shown by dashed lines. Additive values and dominance values at 
the beginning of the future breeding phase (year 0) were centered at 
zero

Fig. 6   Prediction accuracy for selection of new parents under differ-
ent dominance degrees (d/a). In each panel, prediction accuracy is 
plotted for the future breeding phase of the breeding programs with 
genomic selection. Each line shows the mean prediction accuracy 
for the 10 simulated replications on an annual basis. The different 
types of breeding program are shown in different colors. The conven-
tional breeding program with genomic selection (Conv GS) is yel-
low. The two-part breeding program with genomic selection (2Part) 
is shown in blue with one crossing cycle per year and in purple with 
three crossing cycles per year. The two types of parent selection were 
shown in different line-styles. Selection based on genomic estimated 
breeding values (GEBV) is shown by continuous lines. Selection 
based on genomic prediction of cross-performance (GPCP) is shown 
by dashed lines. Prediction accuracy was measured in the seedling 
stage for the two-part breeding programs and in stage 1 for the con-
ventional breeding program with genomic selection. Note that the 
prediction accuracies for all three crossing cycles per year of the two-
part breeding program with three crossing cycles are shown in Fig. 
S11
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dominance degree was high. All breeding programs showed 
a reduced rate of genetic gain when the dominance degree 
increased. However, this reduction was stronger when par-
ents were selected using GEBVs. The two-part breeding 
programs with parent selection based on GEBVs produced 
even less genetic gain than the conventional breeding pro-
gram when the dominance degree was 0.3 and 0.9. These 
results were not surprising as selection of parents based on 
GEBVs gave a faster increase in the inbreeding coefficient 
than selection based on GPCP when the dominance degree 
was high, which resulted in inbreeding depression.

Genomic inbreeding coefficient

Selection of parents based on GPCP reduced inbreed-
ing when the dominance degree increased. This is shown 
in Fig. 4, which plots the genomic inbreeding coefficient 
against time in clonal stage 1 under the four simulated 
dominance degrees. As the dominance degree increased, all 
breeding programs showed a decreased growth rate of the 
genomic inbreeding coefficient. However, this decrease was 
much stronger when parents were selected based on GPCP 
compared to when GEBVs were used.

Figure 4 also shows that the two-part breeding programs 
with GPCP gave the strongest reduction in the genomic 
inbreeding coefficient as the dominance degree increased. 
When the dominance degree was zero, both breeding pro-
grams had almost approached complete inbreeding at the end 
of the future breeding phase. However, when the dominance 
degree was 0.9, the two-part breeding program with GPCP 
and one crossing cycle per year gave the lowest inbreed-
ing coefficient, which was negative during the entire future 
breeding phase. The two-part breeding program with GPCP 
and three crossing cycles per year was also negative in the 
first half of the future breeding phase but became positive 
during the second half.

Additive values and dominance values

Selection of parents based on GPCP enabled better simul-
taneous exploitation of the additive and dominance values 
than selection of parents based on GEBVs. This is shown in 
Fig. 5, which plots the additive values and the dominance 
values against time in clonal stage 1. The three top panels 
show the additive values, and the three bottom panels show 
the dominance values.

The two-part breeding program with GPCP and three 
crossing cycles per year gave the highest increase of the 
additive value over time when the dominance degree was 0.1 
and 0.3 (Fig. 5 top). However, when the dominance degree 
was 0.9, the two-part breeding program with parent selection 
based on GEBVs and three crossing cycles per year gave the 
highest increase of the additive value.

Figure 5 (top) also shows that the rate of increase of the 
additive value over time was reduced in all breeding pro-
grams as the dominance degree increased. The conventional 
breeding program always gave the lowest increase of the 
additive value.

Selection of parents using GPCP generated increased 
dominance values as the dominance degree increased (Fig. 5 
bottom). It gave a reduction of the dominance value when the 
dominance degree was 0.1, but a strong increase when the 
dominance degree was 0.9. The increase of the dominance 
value compensated for the reduction of the additive value 
as the dominance degree increased. The two-part breeding 
programs with GPCP showed the strongest increase. With 
three crossing cycles per year, however, a rapid decrease of 
the dominance value over time was observed.

Selection of parents based on GEBVs did not effec-
tively exploit the dominance value as the dominance degree 
increased. This is also shown in Fig. 5 (bottom). Both vari-
ations of the two-part breeding program with parent selec-
tion based on GEBVs generated reduced dominance values 
as the dominance degree increased. This reduction in the 
dominance value over time became more extreme as the 
dominance degree increased and exceeded the increase in 
the additive value when the dominance degree was high.

Prediction accuracy of the parent selection method

The advantage of GPCP to select parents over using GEBVs 
was not only due to better simultaneous exploitation of 
the additive and dominance value, but also resulted from 
a higher prediction accuracy when the dominance degree 
was high. At higher dominance degrees, GPCP became 
more accurate, and selection of parents based on GEBVs 
became less accurate. This is shown in Fig. 6, which plots 
the prediction accuracy of the parent selection methods 
against time under the dominance degrees of 0.1 and 0.9. 
Prediction accuracy was measured in the seedling stage for 
the two-part breeding programs and in clonal stage 1 for 
the conventional breeding program with genomic selection. 
Prediction accuracy of GPCP became similar in the three 
GS breeding programs as the dominance degree increased. 
It should be noted, however, that prediction accuracies might 
not be directly comparable between breeding programs since 
the programs showed different trends for their genetic vari-
ances at the respective stage of parent selection.

Prediction accuracy of the genetic value 
in the seedling stage

Prediction accuracy of the genetic value of the seedlings 
increased when the dominance degree increased. Figure 7 
plots the prediction accuracy of the genetic value in the seed-
ling stage over time under the dominance degrees of 0.1 
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and 0.9. The highest prediction accuracy was observed in 
the two-part breeding program with parent selection based 
on GEBVs and one crossing cycle per year. In all breeding 
programs, prediction accuracy was lower when parents were 
selected based on GPCP compared to GEBVs. The conven-
tional breeding program with genomic selection using GPCP 
to select parents showed the lowest prediction accuracies 
under all dominance degrees. As for the prediction accuracy 
of the parent selection method, prediction accuracies might 
not be directly comparable between breeding programs since 
the programs showed different trends for their genetic vari-
ances in the seedling stage.

Discussion

For genomic selection in clonally propagated crops with dip-
loid (-like) meiotic behavior to be effective, parents should 
be selected based on genomic predicted cross-performance 
(GPCP) unless dominance is negligible. To discuss this 
result, we first describe how genomic selection of parents 
can improve clonal breeding programs under the assumption 
of additive genetic control. We then explain why genomic 
selection of parents requires consideration of dominance 
effects when dominance is appreciable. We show that 
selection of parents based on GPCP enables simultaneous 

exploitation of additive and dominance effects, which facili-
tates exploitation of pseudo-overdominance in the progeny 
of a cross to increase genetic gain when the dominance 
degree is high. We also show that, at higher dominance 
degrees, heterozygosity becomes a reliable predictor of the 
dominance value when parents are selected based on GPCP.

Genomic selection of parents improved genetic gain 
under additive genetic control

Under additive genetic control, genomic selection of parents 
always produced faster genetic gain than phenotypic selec-
tion. This was observed regardless of whether parents were 
selected based on GEBVs or based on GPCP.

As expected, GS improved the conversion of genetic 
variance into genetic gain. This improvement resulted from 
a shortened generation interval and an increased selection 
accuracy in early stages of the breeding program. As new 
genotypes were added to the training population each year, 
more information became available to predict the marker 
effects, while the impact of G × Y interaction on the marker 
effects was reduced. Therefore, the breeding programs with 
GS also showed an accelerated depletion of genetic variance 
over time compared to the conventional breeding program 
(Fig. S8). This depletion was most severe with three crossing 
cycles per year.

Our findings under additive genetic control were consist-
ent with those of Gaynor et al. (2017) who used stochastic 
simulations to evaluate GS strategies in plant breeding pro-
grams for developing inbred lines. We refer the reader to this 
study for a detailed description of the relationship between 
the generation interval, prediction accuracy, G × Y interac-
tion and genetic variance when additive genetic control is 
assumed.

The two‑part breeding programs better exploited 
genomic selection than the conventional breeding 
program with genomic selection under additive 
genetic control

The two-part breeding programs showed the highest rates of 
genetic gain under additive genetic control. The better per-
formance compared to the conventional breeding program 
with genomic selection resulted from an optimal exploitation 
of GS with a very short generation interval and an improved 
selection accuracy in the seedling stage.

Selection in the seedling stage poses a major challenge 
in conventional clonal breeding programs due to a high 
selection intensity combined with low selection accuracy 
(Grüneberg et  al. 2009; Bradshaw 2016). The two-part 
breeding programs improved selection accuracy by replacing 
phenotypic selection with GS. When phenotypic selection 
was used, seedlings were selected based on their observed 

Fig. 7   Prediction accuracy for the total genetic value of the seed-
lings under different dominance degrees (d/a). In each panel, predic-
tion accuracy is plotted in the seedling stage for the last five years 
of the burn-in breeding phase and the future breeding phase. Each 
line shows the mean prediction accuracy for the 10 simulated replica-
tions. The different types of breeding program are shown in different 
colors. The conventional breeding program (Conv) is gray. The con-
ventional breeding program with genomic selection (Conv GS) is yel-
low. The two-part breeding program with genomic selection (2Part) 
is shown in blue with one crossing cycle per year and in purple with 
three crossing cycles per year. The two types of parent selection were 
shown in different line-styles. Selection based on genomic estimated 
breeding values (GEBV) is shown by continuous lines. Selection 
based on genomic prediction of cross-performance (GPCP) is shown 
by dashed lines
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per se performance. When GS was used, seedlings were 
selected based on their predicted performance as clones.

Genomic selection in the seedling stage increased selec-
tion accuracy for two reasons:

i)	 The phenotypic records in the clonal stages which were 
used to train the GS model had a higher heritability than 
the phenotypic records of the unreplicated seedlings.

ii)	 Marker alleles were replicated within and across multi-
ple years.

This increase in selection accuracy also laid the founda-
tion for the selection of parents in the seedling stage, allow-
ing for one or multiple crossing cycles per year to minimize 
the generation interval.

In the conventional breeding program with genomic 
selection applied in clonal stage 1, selection in the seed-
ling stage was based on phenotypic per se performance. 
Hence, selection accuracy in the seedlings did not increase 
compared to the conventional breeding program with-
out genomic selection. The increased rate of genetic gain 
mainly resulted from a shortened generation interval and an 
increased selection accuracy in clonal stage 1.

Selection of parents based on genomic predicted 
cross‑performance increased selection intensity 
compared to selection of parents based on genomic 
estimated breeding values under additive genetic 
control

Under additive genetic control, differences in genetic gain 
between the two parent selection methods likely resulted 
from an increased selection intensity when parents were 
selected based on GPCP compared to selection of parents 
based on GEBVs.

When GEBVs were used, the 60 best genotypes were 
selected and randomly crossed to mimic a “good by good” 
crossing scheme. When GPCP was used, bi-parental crosses 
were selected based on the predicted mean genetic value of 
the F1. Under additive genetic control, the predicted mean 
genetic value of the F1 is equal to the mean GEBV of both 
parents. Selection of parents based on GPCP resulted in an 
excessive use of a few very good parents in many crosses, 
and the number of parents was often less than 60 (Fig. S4). 
Therefore, the selection intensity was higher compared to 
when parents were selected based on GEBVs and randomly 
crossed.

In the conventional breeding program with genomic selec-
tion, the increased selection intensity resulted in more genetic 
gain over time compared to when parents were selected based 
on GEBVs. In the two-part breeding programs, however, it 
resulted in more genetic gain in the first years, but thereafter 
genetic gain reached a plateau due to a depletion of genetic 

variance. This depletion of genetic variance was more severe 
when three crossing cycles per year were used.

A crossing strategy in a real-world breeding program would 
probably lie somewhere in between the two simulated par-
ent selection methods. A breeder would not randomly select 
crosses, but rather combine parents that are expected to gen-
erate improved progeny. Although very good genotypes may 
be used at high frequency, a breeder would make sure that an 
overly excessive use is avoided.

Genomic selection of crossing parents requires 
consideration of dominance effects unless 
dominance is negligible

If dominance is appreciable, genetic gain becomes a func-
tion of additive and non-additive gene action. If epistasis is 
ignored, non-additive gene action is completely determined by 
dominance. Achieving high rates of genetic gain then depends 
on an efficiently balanced exploitation of additive and domi-
nance effects (Bradshaw 2016).

This requires two opposed actions:

i)	 The frequency of alleles with beneficial additive genetic 
effects in homozygous state needs to be increased to 
improve the additive value of the breeding population.

ii)	 Heterozygosity needs to be preserved to exploit domi-
nance effects and keep the dominance value high in the 
breeding population.

A well-balanced exploitation of the additive value and the 
dominance value can only be accomplished through selec-
tion and recombination of suitable parents. While inbreeding 
can be used to increase the frequency of beneficial alleles in 
homozygous state to improve the additive value, it also results 
in a reduction of heterozygosity and the dominance value. As 
the dominance degree increases, the importance of the domi-
nance value relative to the additive value increases and main-
taining or even increasing heterozygosity becomes critical. In 
the worst-case scenario, a decrease in the dominance value 
over time would exceed the increase in the additive value, and 
the rate of genetic gain becomes negative due to inbreeding 
depression. To ensure high and sustainable rates of genetic 
gain in clonal breeding programs, a parent selection method is 
required that optimally balances the contribution of the addi-
tive and dominance components in the next generation.

Selection of parents based on genomic predicted 
cross‑performance enabled simultaneous 
exploitation of additive effects and dominance 
effects

Selection of parents based on GPCP enabled efficient simul-
taneous exploitation of additive effects and dominance 
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effects by reducing the increase in inbreeding over time 
when the dominance degree increased. This became critical 
to make positive genetic gain over time when the dominance 
degree was high.

As the dominance degree increased, selection of parents 
based on GPCP produced increasingly more genetic gain 
than selection based on GEBVs. The GEBV is the sum of 
the average effects of the marker alleles called in a genotype. 
These average effects are predicted for all markers simulta-
neously by performing a linear regression of the phenotypes 
in the training population on the marker genotypes, the con-
cept described by Falconer (1985) for a one-locus model. 
Although the genomic estimated breeding value thereby 
generally captures a large part of the dominance interaction 
(Falconer and Mackay 1996; Hill et al. 2008), this popula-
tion-based predictor of the value of an individual parent for 
the progeny generation ignores dominance deviation.

In contrast, GPCP fully captures additive and domi-
nance marker effects and thereby enables prediction of the 
expected total genetic value of the progeny of a bi-parental 
cross rather than prediction of the value of an individual par-
ent for the progeny population. The inclusion of non-additive 
effects can also facilitate an enhancement and an improved 
exploitation of non-additive genetic variation compared to 
parent selection based on genomic estimated breeding values 
(Varona et al. 2018). When parents were selected based on 
GPCP, the enhancement of non-additive genetic variation 
was a direct outcome of the reduced increase in inbreeding 
over time. The improved exploitation of non-additive genetic 
variation resulted from the efficiently balanced exploitation 
of the additive and dominance value.

Interestingly, the prediction model used for GPCP auton-
omously assigned more weight to the predicted dominance 
value of a cross as dominance increased. This was accom-
plished by including the genomic inbreeding coefficient (f) 
as a covariate in the model, which accounted for directional 
dominance and can be seen as an estimator for inbreed-
ing depression explained by genomic inbreeding (Xiang 
et al. 2016; Varona et al. 2018). As the dominance degree 
increased, the value of crosses which maintained or even 
increased heterozygosity in the population also increased. 
The level of heterozygosity in the progeny population was 
controlled by the number of parents used for crossing, which 
increased to minimize or avoid inbreeding when the domi-
nance degree increased (Fig. S4-S7).

Selection of parents based on genomic predicted 
cross‑performance enabled exploitation 
of pseudo‑overdominance in the progeny 
of a cross when the dominance degree was high

The two-part breeding programs with parent selection 
based on GEBVs gave negative genetic gain due to severe 

inbreeding depression when the dominance degree was high. 
After the first year, the decrease in the dominance value 
over time was consistently higher than the increase in the 
additive value.

At first sight, this might seem surprising as we did not 
simulate overdominance at the allele-level. Under the one-
locus model with a dominance degree < 1, the allele com-
bination with the favorable allele in homozygous state will 
result in the highest genetic value of all pairwise allele 
combinations. In this case, selection of parents based on the 
GEBV is an efficient strategy to increase the frequency of 
the beneficial allele in the population over time, and hence 
to increase genetic gain. Only under overdominance does the 
heterozygote become superior to both homozygotes and the 
fixation of the favorable allele results in a reduction of the 
genetic value (Falconer and Mackay 1996).

Overdominance seems to be an extremely rare phenom-
enon in nature. However, due to linkage disequilibrium 
(LD), haplotype blocks are the units of genetic transmission 
rather than single loci. When haplotype blocks with favora-
ble alleles in repulsion phase are combined during sexual 
recombination, the cumulative effect of these loci can cre-
ate pseudo-overdominance although the dominance degree 
at each locus is < 1 (Bingham et al. 1994; Bingham 1998).

Selection of parents based on the GEBV will increase 
the frequency of the haplotype blocks with the highest sum 
of average effects. The heterotic effects due to pseudo-over-
dominance, however, are reduced from one generation to the 
next. Furthermore, even haplotype blocks with low GEBVs 
may contain favorable alleles, which are removed from the 
population through selection. As a result, genetic variance is 
reduced, limiting long-term additive genetic gain.

Selection of parents based on GPCP, on the other hand, 
considers the heterotic potential of a cross when predicting 
the performance of the progeny. In this way, non-additive 
effects due to complementation of haplotype blocks can be 
preserved in the population over several generations if their 
contribution to the total genetic value is high. Furthermore, 
by preserving haplotype blocks with lower GEBVs for a few 
generations, recombination can make the favorable alleles 
that they contain available.

Multiple crossing cycles per year using genomic 
prediction of cross‑performance without updating 
the prediction model can adversely affect long‑term 
genetic gain especially when the dominance degree 
is high

In the two-part breeding programs with parent selection 
based on GPCP, genomic inbreeding increased faster with 
three crossing cycles per year compared to one crossing 
cycle per year. While using three crossing cycles per year 
resulted in more genetic gain when the dominance degree 
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was low, it gave less genetic gain when the dominance 
degree was high.

As the dominance degree increased, keeping inbreeding 
low became critical to ensure a sustainable exploitation of 
dominance effects. We hypothesize that two factors caused 
the two-part breeding program with three crossing cycles 
per year to be less efficient at keeping inbreeding low than 
the two-part breeding program with one crossing cycle 
per year:

i)	 A reduced number of seedlings generated per crossing 
cycle.

ii)	 An irregular updating of the prediction model for selec-
tion of parents.

The increased number of crossing cycles per year in 
combination with a reduced number of crosses and seed-
lings per cross resulted in an accelerated removal of hap-
lotype block diversity from the breeding population. To 
equalize annual costs, the size of the seedling population 
was reduced from 12,000 to 4,000 seedlings per cross 
with three crossing cycles per year. Hence, the population 
became more susceptible to genetic drift and dominance 
effects due to complementation of haplotype blocks could 
not be maintained over multiple generations.

The irregular updating of the prediction model for the 
selection of parents resulted in a less efficiently balanced 
exploitation of additive and dominance effects. Although 
multiple cycles of crossing and selection per year effec-
tively reduced the generation interval, the prediction 
model was updated only once a year, and cross-prediction 
became increasingly less efficient. Assuming purely addi-
tive gene action in a simulation of a line breeding pro-
gram, Gaynor et al. (2017) found that the increased genetic 
distance between the training and prediction population 
caused selection accuracy to drop with every additional 
crossing cycle. Although we also observed a reduction in 
prediction accuracy with an increased number of cycles 
(Fig. S11), the constant weights assigned to additive and 
dominance effects by the prediction model contributed 
more strongly to the accelerated reduction of heterozygo-
sity. While inbreeding increased with every crossing cycle, 
the covariate associated with genomic inbreeding in the 
prediction model remained unchanged for two more cycles 
and could not sufficiently counteract inbreeding.

These results indicate that GPCP might not be opti-
mal to select parents when multiple cycles of crossing 
and selection are done without updating the prediction 
model. To solve this problem, a strategy such as optimal 
contribution selection could be useful to maximize long-
term genetic gain as shown by Gorjanc et al. (2017) in 
a two-part line breeding program with multiple crossing 
cycles per year.

Heterozygosity became a reliable predictor 
of the dominance value when the dominance 
degree was high

Prediction accuracy of GPCP increased as the dominance 
degree increased. Furthermore, prediction accuracy of the 
genetic value of the seedlings increased as the dominance 
degree increased.

We infer that marker-based heterozygosity became an 
accurate predictor of non-additive genetic effects for selec-
tion of crosses especially when the dominance degree was 
high, i.e., when the genetic value was mainly a result of non-
additive gene action. This was mostly driven by including 
the genomic inbreeding coefficient (f) as a covariate in the 
model. Selection accuracy in the seedlings also was signifi-
cantly increased under high dominance degrees. Both factors 
contributed to the two-part breeding programs with GPCP 
generating the most genetic gain over time when dominance 
was appreciable.

Further implications for breeding programs 
for outbred species

In this paper, we proposed genomic prediction of cross-per-
formance (GPCP) as an efficient method to select parents 
in clonal breeding programs based on the predicted mean 
genetic value of a cross. We expect that GPCP could also 
be used in other breeding programs for outbred individu-
als, such as animal breeding programs, to increase rates of 
genetic gain. As with clonal crops, animal breeding pro-
grams must account for the detrimental effects of inbreeding 
depression. Animal breeders use various methods to accom-
plish this, ranging from rule-of-thumb recommendations to 
avoid matings between close relatives to optimal contribu-
tion selection, a numeric technique for limiting population-
level inbreeding (Woolliams et al. 2015). We hypothesize 
GPCP to outperform these methods by directly estimating 
progeny performance and thereby accounting for inbreeding 
depression in a purely data-driven manner, given the predic-
tion model is constantly updated. Further research, however, 
will be required to test this hypothesis.

While we showed that GPCP is advantageous over selec-
tion of parents based on the GEBV unless dominance is 
negligible, opportunities to further improve cross-prediction 
may exist. Wolfe et al. (2021) proposed to combine the pre-
dicted total genetic mean and variance of a cross into a use-
fulness criterion. They predicted the total genetic variance of 
each cross based on the parents’ marker haplotypes, marker 
effects, and recombination frequencies. Selection of parents 
based on the usefulness of a cross might enable even higher 
rates of genetic gain than selection based on the predicted 
total genetic mean. A long-term comparison of both meth-
ods, however, will be critical to investigate this hypothesis. It 
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should be mentioned that Wolfe et al. selected parents based 
on GEBVs, a method that we advise against in this paper.

Although we assume that our overall conclusions are gen-
erally valid in outbred species with diploid (-like) meiotic 
behavior, we strongly recommend performing a breeding 
program-specific analysis when considering practical imple-
mentation of GPCP. As with genomic selection strategies 
in general, the efficiency of GPCP is very likely to be influ-
enced by factors such as training population size, marker 
density, genotyping costs, and trait heritability. A sensitivity 
analysis covering all those factors would go far beyond the 
scope of this study, and its importance can only be empha-
sized here.
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