39 research outputs found
Shared features and reciprocal complementation of the Chlamydomonas and Arabidopsis microbiota
Microscopic algae release organic compounds to the region immediately surrounding their cells, known as the phycosphere, constituting a niche for colonization by heterotrophic bacteria. These bacteria take up algal photoassimilates and provide beneficial functions to their host, in a process that resembles the establishment of microbial communities associated with the roots and rhizospheres of land plants. Here, we characterize the microbiota of the model alga Chlamydomonas reinhardtii and reveal extensive taxonomic and functional overlap with the root microbiota of land plants. Using synthetic communities derived from C. reinhardtii and Arabidopsis thaliana, we show that phycosphere and root bacteria assemble into taxonomically similar communities on either host. We show that provision of diffusible metabolites is not sufficient for phycosphere community establishment, which additionally requires physical proximity to the host. Our data suggest the existence of shared ecological principles driving the assembly of the A. thaliana root and C. reinhardtii phycosphere microbiota, despite the vast evolutionary distance between these two photosynthetic organisms
Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in Arabidopsis
Plant innate immunity restricts growth of bacterial pathogens that threaten global food security. However, the mechanisms by which plant immunity suppresses bacterial growth remain enigmatic. Here we show that Arabidopsis thaliana secreted aspartic protease 1 and 2 (SAP1 and SAP2) cleave the evolutionarily conserved bacterial protein MucD to redundantly inhibit the growth of the bacterial pathogen Pseudomonas syringae. Antibacterial activity of SAP1 requires its protease activity in planta and in vitro. Plants overexpressing SAP1 exhibit enhanced MucD cleavage and resistance but incur no penalties in growth and reproduction, while sap1 sap2 double mutant plants exhibit compromised MucD cleavage and resistance against P. syringae. P. syringae lacking mucD shows compromised growth in planta and in vitro. Notably, growth of ΔmucD complemented with the non-cleavable MucD(F106Y) is not affected by SAP activity in planta and in vitro. Our findings identify the genetic factors and biochemical process underlying an antibacterial mechanism in plants
Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth
Plant roots are colonized by microorganisms from the surrounding soil that belong to different kingdoms and form a multikingdom microbial community called the root microbiota. Despite their importance for plant growth, the relationship between soil management, the root microbiota, and plant performance remains unknown. Here, we characterize the maize root-associated bacterial, fungal, and oomycetal communities during the vegetative and reproductive growth stages of four maize inbred lines and the pht1;6 phosphate transporter mutant. These plants were grown in two long-term experimental fields under four contrasting soil managements, including phosphate-deficient and -sufficient conditions. We showed that the maize root-associated microbiota is influenced by soil management and changes during host growth stages. We identified stable bacterial and fungal root-associated taxa that persist throughout the host life cycle. These taxa were accompanied by dynamic members that covary with changes in root metabolites. We observed an inverse stable-to-dynamic ratio between root-associated bacterial and fungal communities. We also found a host footprint on the soil biota, characterized by a convergence between soil, rhizosphere, and root bacterial communities during reproductive maize growth. Our study reveals the spatiotemporal dynamics of the maize root-associated microbiota and suggests that the fungal assemblage is less responsive to changes in root metabolites than the bacterial community