14,754 research outputs found
Black hole shadows in fourth-order conformal Weyl gravity
We calculate the characteristics of the "black hole shadow" for a rotating,
neutral black hole in fourth-order conformal Weyl gravity. It is shown that the
morphology is not significantly affected by the underlying framework, except
for very large masses. Conformal gravity black hole shadows would also
significantly differ from their general relativistic counterparts if the values
of the main conformal gravity parameters, and , were increased
by several orders of magnitude. Such increased values for and
are currently ruled out by gravitational phenomenology. Therefore, it is
unlikely that these differences in black hole shadows will be detected in
future observations, carried out by the Event Horizon Telescope or other such
experiments.Comment: 21 pages, including 2 figures. Minor corrections and references
added. Final version to appear in the Canadian Journal of Physic
Toy Blocks and Rotational Physics
In this paper we summarize the theory of the "falling chimney," which deals
with the breaking of tall structures in mid-air, when they fall to the ground.
We describe how to reproduce these effects using small-scale models built with
toy blocks. We also present an improved and more effective way to perform and
analyze these interesting experiments, by using video capture software together
with a digital video camera.Comment: 6 pages, including 3 figure
Formulation of a dynamic analysis method for a generic family of hoop-mast antenna systems
Analytical studies of mast-cable-hoop-membrane type antennas were conducted using a transfer matrix numerical analysis approach. This method, by virtue of its specialization and the inherently easy compartmentalization of the formulation and numerical procedures, can be significantly more efficient in computer time required and in the time needed to review and interpret the results
Probing microplasticity in small scale FCC crystals via Dynamic Mechanical Analysis
In small-scale metallic systems, collective dislocation activity has been
correlated with size effects in strength and with a step-like plastic response
under uniaxial compression and tension. Yielding and plastic flow in these
samples is often accompanied by the emergence of multiple dislocation
avalanches. Dislocations might be active pre-yield, but their activity
typically cannot be discerned because of the inherent instrumental noise in
detecting equipment. We apply Alternate Current (AC) load perturbations via
Dynamic Mechanical Analysis (DMA) during quasi-static uniaxial compression
experiments on single crystalline Cu nano-pillars with diameters of 500 nm, and
compute dynamic moduli at frequencies 0.1, 0.3, 1, and 10 Hz under
progressively higher static loads until yielding. By tracking the collective
aspects of the oscillatory stress-strain-time series in multiple samples, we
observe an evolving dissipative component of the dislocation network response
that signifies the transition from elastic behavior to dislocation avalanches
in the globally pre-yield regime. We postulate that microplasticity, which is
associated with the combination of dislocation avalanches and slow viscoplastic
relaxations, is the cause of the dependency of dynamic modulus on the driving
rate and the quasi-static stress. We construct a continuum mesoscopic
dislocation dynamics model to compute the frequency response of stress over
strain and obtain a consistent agreement with experimental observations. The
results of our experiments and simulations present a pathway to discern and
quantify correlated dislocation activity in the pre-yield regime of deforming
crystals.Comment: 5 pages, 3 figure
A cloud robotics architecture for an emergency management and monitoring service in a smart cityenvironment
Cloud robotics is revolutionizing not only the robotics industry but also the ICT world, giving robots more storage and computing capacity, opening new scenarios that blend the physical to the digital world. In this vision new IT architectures are required to manage robots, retrieve data from them and create services to interact with users. In this paper a possible implementation of a cloud robotics architecture for the interaction between users and UAVs is described. Using the latter as monitoring agents, a service for fighting crime in urban environment is proposed, making one step forward towards the idea of smart cit
Quasi-thermal Comptonization and gamma-ray bursts
Quasi-thermal Comptonization in internal shocks formed between relativistic
shells can account for the high energy emission of gamma-ray bursts. This is in
fact the dominant cooling mechanism if the typical energy of the emitting
particles is achieved either through the balance between heating and cooling or
as a result of electron-positron pair production. Both processes yield sub or
mildly relativistic energies. In this case the synchrotron spectrum is
self-absorbed, providing the seed soft photons for the Comptonization process,
whose spectrum is flat [F(v) ~ const], ending either in an exponential cutoff
or a Wien peak, depending on the scattering optical depth of the emitting
particles. Self-consistent particle energy and optical depth are estimated and
found in agreement with the observed spectra.Comment: 10 pages, ApJ Letters, accepted for publicatio
Berry phase for a spin 1/2 in a classical fluctuating field
The effect of fluctuations in the classical control parameters on the Berry
phase of a spin 1/2 interacting with a adiabatically cyclically varying
magnetic field is analyzed. It is explicitly shown that in the adiabatic limit
dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio
Exchange energy and generalized polarization in the presence of spin-orbit coupling in two dimensions
We discuss a general form of the exchange energy for a homogeneous system of
interacting electrons in two spatial dimensions which is particularly suited in
the presence of a generic spin-orbit interaction. The theory is best formulated
in terms of a generalized fractional electronic polarization. Remarkably we
find that a net generalized polarization does not necessarily translate into an
increase in the magnitude of the exchange energy, a fact that in turn favors
unpolarized states. Our results account qualitatively for the findings of
recent experimental investigations
5-(carbamoylmethylene)-oxazolidin-2-ones as a promising class of heterocycles inducing apoptosis triggered by increased ROS levels and mitochondrial dysfunction in breast and cervical cancer
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use
- …
