12,926 research outputs found
Biconical critical dynamics
A complete two loop renormalization group calculation of the multicritical
dynamics at a tetracritical or bicritical point in anisotropic antiferromagnets
in an external magnetic field is performed. Although strong scaling for the two
order parameters (OPs) perpendicular and parallel to the field is restored as
found earlier, in the experimentally accessible region the effective dynamical
exponents for the relaxation of the OPs remain different since their equal
asymptotic values are not reached.Comment: 6 pages, 2 figures; some additions, corrected typo
Polymeric compositions and their method of manufacture
Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation
Critical slowing down in random anisotropy magnets
We study the purely relaxational critical dynamics with non-conserved order
parameter (model A critical dynamics) for three-dimensional magnets with
disorder in a form of the random anisotropy axis. For the random axis
anisotropic distribution, the static asymptotic critical behaviour coincides
with that of random site Ising systems. Therefore the asymptotic critical
dynamics is governed by the dynamical exponent of the random Ising model.
However, the disorder influences considerably the dynamical behaviour in the
non-asymptotic regime. We perform a field-theoretical renormalization group
analysis within the minimal subtraction scheme in two-loop approximation to
investigate asymptotic and effective critical dynamics of random anisotropy
systems. The results demonstrate the non-monotonic behaviour of the dynamical
effective critical exponent .Comment: 11 pages, 4 figures, style file include
Energetics of positron states trapped at vacancies in solids
We report a computational first-principles study of positron trapping at
vacancy defects in metals and semiconductors. The main emphasis is on the
energetics of the trapping process including the interplay between the positron
state and the defect's ionic structure and on the ensuing annihilation
characteristics of the trapped state. For vacancies in covalent semiconductors
the ion relaxation is a crucial part of the positron trapping process enabling
the localization of the positron state. However, positron trapping does not
strongly affect the characteristic features of the electronic structure, e.g.,
the ionization levels change only moderately. Also in the case of metal
vacancies the positron-induced ion relaxation has a noticeable effect on the
calculated positron lifetime and momentum distribution of annihilating
electron-positron pairs.Comment: Submitted to Physical Review B on 17 April 2007. Revised version
submitted on 6 July 200
Heavily Irradiated N-in-p Thin Planar Pixel Sensors with and without Active Edges
We present the results of the characterization of silicon pixel modules
employing n-in-p planar sensors with an active thickness of 150
m, produced at MPP/HLL, and 100-200 m thin active
edge sensor devices, produced at VTT in Finland. These thin sensors are
designed as candidates for the ATLAS pixel detector upgrade to be operated at
the HL-LHC, as they ensure radiation hardness at high fluences. They are
interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the
n-in-p technology only requires a single side processing and thereby it is a
cost-effective alternative to the n-in-n pixel technology presently employed in
the LHC experiments. High precision beam test measurements of the hit
efficiency have been performed on these devices both at the CERN SpS and at
DESY, Hamburg. We studied the behavior of these sensors at different bias
voltages and different beam incident angles up to the maximum one expected for
the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained
with 150 m thin sensors, assembled with the new ATLAS FE-I4 chip
and irradiated up to a fluence of
410, show that they are
excellent candidates for larger radii of the silicon pixel tracker in the
upgrade of the ATLAS detector at HL-LHC. In addition, the active edge
technology of the VTT devices maximizes the active area of the sensor and
reduces the material budget to suit the requirements for the innermost layers.
The edge pixel performance of VTT modules has been investigated at beam test
experiments and the analysis after irradiation up to a fluence of
510 has been performed
using radioactive sources in the laboratory.Comment: Proceedings for iWoRiD 2013 conference, submitted to JINS
Production and Characterisation of SLID Interconnected n-in-p Pixel Modules with 75 Micrometer Thin Silicon Sensors
The performance of pixel modules built from 75 micrometer thin silicon
sensors and ATLAS read-out chips employing the Solid Liquid InterDiffusion
(SLID) interconnection technology is presented. This technology, developed by
the Fraunhofer EMFT, is a possible alternative to the standard bump-bonding. It
allows for stacking of different interconnected chip and sensor layers without
destroying the already formed bonds. In combination with Inter-Chip-Vias (ICVs)
this paves the way for vertical integration. Both technologies are combined in
a pixel module concept which is the basis for the modules discussed in this
paper.
Mechanical and electrical parameters of pixel modules employing both SLID
interconnections and sensors of 75 micrometer thickness are covered. The
mechanical features discussed include the interconnection efficiency, alignment
precision and mechanical strength. The electrical properties comprise the
leakage currents, tuning characteristics, charge collection, cluster sizes and
hit efficiencies. Targeting at a usage at the high luminosity upgrade of the
LHC accelerator called HL-LHC, the results were obtained before and after
irradiation up to fluences of
(1 MeV neutrons).Comment: 16 pages, 22 figure
Thin n-in-p pixel sensors and the SLID-ICV vertical integration technology for the ATLAS upgrade at the HL-LHC
The R&D activity presented is focused on the development of new modules for
the upgrade of the ATLAS pixel system at the High Luminosity LHC (HL-LHC). The
performance after irradiation of n-in-p pixel sensors of different active
thicknesses is studied, together with an investigation of a novel
interconnection technique offered by the Fraunhofer Institute EMFT in Munich,
the Solid-Liquid-InterDiffusion (SLID), which is an alternative to the standard
solder bump-bonding. The pixel modules are based on thin n-in-p sensors, with
an active thickness of 75 um or 150 um, produced at the MPI Semiconductor
Laboratory (MPI HLL) and on 100 um thick sensors with active edges, fabricated
at VTT, Finland. Hit efficiencies are derived from beam test data for thin
devices irradiated up to a fluence of 4e15 neq/cm^2. For the active edge
devices, the charge collection properties of the edge pixels before irradiation
is discussed in detail, with respect to the inner ones, using measurements with
radioactive sources. Beyond the active edge sensors, an additional ingredient
needed to design four side buttable modules is the possibility of moving the
wire bonding area from the chip surface facing the sensor to the backside,
avoiding the implementation of the cantilever extruding beyond the sensor area.
The feasibility of this process is under investigation with the FE-I3 SLID
modules, where Inter Chip Vias are etched, employing an EMFT technology, with a
cross section of 3 um x 10 um, at the positions of the original wire bonding
pads.Comment: Proceedings for Pixel 2012 Conference, submitted to NIM A, 6 page
Field theory of bicritical and tetracritical points. III. Relaxational dynamics including conservation of magnetization (Model C)
We calculate the relaxational dynamical critical behavior of systems of
symmetry including conservation of magnetization by
renormalization group (RG) theory within the minimal subtraction scheme in two
loop order. Within the stability region of the Heisenberg fixed point and the
biconical fixed point strong dynamical scaling holds with the asymptotic
dynamical critical exponent where is the crossover
exponent and the exponent of the correlation length. The critical
dynamics at and is governed by a small dynamical transient
exponent leading to nonuniversal nonasymptotic dynamical behavior. This may be
seen e.g. in the temperature dependence of the magnetic transport coefficients.Comment: 6 figure
- …