21 research outputs found

    The Functional ccpA Gene Is Required for Carbon Catabolite Repression in Lactobacillus plantarum

    No full text
    We report the characterization of the ccpA gene of Lactobacillus plantarum, coding for catabolite control protein A. The gene is linked to the pepQ gene, encoding a proline peptidase, in the order ccpA-pepQ, with the two genes transcribed in tandem from the same strand as distinct transcriptional units. Two ccpA transcription start sites corresponding to two functional promoters were found, expression from the upstream promoter being autogenously regulated through a catabolite-responsive element (cre) sequence overlapping the upstream +1 site. During growth on ribose, the upstream promoter showed maximal expression, while growth on glucose led to transcription from the downstream promoter. In a ccpA mutant strain, the gene was transcribed mainly from the upstream promoter in both repressing and non repressing conditions. Expression of two enzyme activities, β-glucosidase and β-galactosidase, was relieved from carbon catabolite repression in the ccpA mutant strain. In vivo footprinting analysis of the catabolite-controlled bglH gene regulatory region in the ccpA mutant strain showed loss of protection of the cre under repressing conditions

    Shoulder glenohumeral elevation estimation based on upper arm orientation

    No full text
    Due to copyright restrictions, the access to the full text of this article is only available via subscription.In this paper, the shoulder glenohumeral displacement during the movement of the upper arm is studied. Four modeling approaches were examined and compared to estimate the humeral head elevation (vertical displacement) and translation (horizontal displacement). A biomechanics-inspired method was used firstly to model the glenohumeral displacement in which a least squares method was implemented for parameter identification. Then, three Gaussian process regression models were used in which the following variable sets were employed: i) shoulder adduction/abduction angle, ii) combination of shoulder adduction/abduction and flexion/extension angles, iii) overall upper arm orientation in the form of quaternions. In order to test the respective performances of these four models, we collected motion capture data and compared the models' representative capabilities. As a result, Gaussian process regression that considered the overall upper arm orientation outperformed the other modeling approaches; however, it should be noted that the other methods also provided accuracy levels that may be sufficient depending on task requirements.New Energy and Industrial Technology Development Organization ; Japan Society for the Promotion of Science ; Cabinet Office, Government of Japan ; Council for Science, Technology and Innovation ; TÜBİTAK ; Japan Agency for Medical Research and Development

    Control of the Arabinose Regulon in Bacillus subtilis by AraR In Vivo: Crucial Roles of Operators, Cooperativity, and DNA Looping

    No full text
    The proteins involved in the utilization of l-arabinose by Bacillus subtilis are encoded by the araABDLMNPQ-abfA metabolic operon and by the araE/araR divergent unit. Transcription from the ara operon, araE transport gene, and araR regulatory gene is induced by l-arabinose and negatively controlled by AraR. The purified AraR protein binds cooperatively to two in-phase operators within the araABDLMNPQ-abfA (OR(A1) and OR(A2)) and araE (OR(E1) and OR(E2)) promoters and noncooperatively to a single operator in the araR (OR(R3)) promoter region. Here, we have investigated how AraR controls transcription from the ara regulon in vivo. A deletion analysis of the ara promoters region showed that the five AraR binding sites are the key cis-acting regulatory elements of their corresponding genes. Furthermore, OR(E1)-OR(E2) and OR(R3) are auxiliary operators for the autoregulation of araR and the repression of araE, respectively. Analysis of mutations designed to prevent cooperative binding of AraR showed that in vivo repression of the ara operon requires communication between repressor molecules bound to two properly spaced operators. This communication implicates the formation of a small loop by the intervening DNA. In an in vitro transcription system, AraR alone sufficed to abolish transcription from the araABDLMNPQ-abfA operon and araE promoters, strongly suggesting that it is the major protein involved in the repression mechanism of l-arabinose-inducible expression in vivo. The ara regulon is an example of how the architecture of the promoters is adapted to respond to the particular characteristics of the system, resulting in a tight and flexible control
    corecore