4,760 research outputs found
Genetic study in patients operated dentally and anesthetized with articaine-epinephrine
Aims: In this study we wanted to figure out if there was a correlation between OPRM1 N40D, TRPV1 I316M, TRPV1 I585V, NOS3 −786T>C and IL6 −174C>G polymorphisms and the response to locally applied articaine-epinephrine anesthetic.
Methods: In this observational study, 114 oral cell samples of patients anesthetized with articaine-epinephrine (54 from men 60 from women), were collected from dental centers in Madrid (Spain). High molecular weight DNA was obtained from oral mucosa cells. The analysis of OPRM1 N40D (rs1799971), TRPV1 I316M (rs222747), TRPV1 I585V (rs8065080) and IL6 −174C>G polymorphism was performed through real-time PCR allelic discrimination using TaqMan probes. Polymorphism NOS3 −786T> C (rs2070744) was analyzed using RFLP-PCR.
Results: The studied polymorphisms are involved neither in the response to the anesthetic, nor in the intensity of perceived dental pain. However, in a subset of female patients we found that TRPV1 I316M was associated with a delayed onset of anesthesia.
Conclusions: There is no association among these polymorphisms and the time elapsed between the application of the anesthetic and the onset of its effect
Quasi-exact solvability beyond the SL(2) algebraization
We present evidence to suggest that the study of one dimensional
quasi-exactly solvable (QES) models in quantum mechanics should be extended
beyond the usual \sla(2) approach. The motivation is twofold: We first show
that certain quasi-exactly solvable potentials constructed with the \sla(2)
Lie algebraic method allow for a new larger portion of the spectrum to be
obtained algebraically. This is done via another algebraization in which the
algebraic hamiltonian cannot be expressed as a polynomial in the generators of
\sla(2). We then show an example of a new quasi-exactly solvable potential
which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on
superintegrabilit
Deterministic Routing with HoL-Blocking-Awareness for Direct Topologies
AbstractRouting is a key design factor to obtain the maximum performance out of interconnection networks. Depending on the number of routing options that packets may use, routing algorithms are classified into two categories. If the packet can only use a single predetermined path, routing is deterministic, whereas if several paths are available, it is adaptive. It is well-known that adaptive routing usually outperforms deterministic routing. However, adaptive routers are more complex and introduces out-of-order delivery of packets. In this paper, we take up the challenge of developing a deterministic routing algorithm for direct topologies that can obtain a similar performance than adaptive routing, while providing the inherent advantages of deterministic routing such as in-order delivery of packets and implementation simplicity. The proposed deterministic routing algorithm is aware of the HoL-blocking effect, and it is designed to reduce it, which, as known, it is a key contributor to degrade interconnection network performance
Recommendations on seismic actions on bridges
The paper describes the main features of a technical Recommendation first draft on Seismic Actions on Bridges, promoted by the Spanish Ministry of Public Works (MOPT). Although much more research is needed to clarify the seismic behaviour of the vast class of problems present in port structures the current state of the art allows at least a classificaton of subjects and the establishment of minimum requirements to guide the design. Also the use of more refined methods for specially dangerous situations needs some general guidelines that contribute to mantein the design under reasonable safety margins. The Recommendations of the Spanish MOPT are a first try in those directions
Stability of epitaxial heterostructured materials
Heterostructured materials are a new family of artificial compounds where the electronic and ionic properties can be modulated by varying the characteristics of the different material layers. These properties arise from the formation of structural oxygen defects in the crystal lattice that result in the activation of charge electrical carriers. Oxygen-deficient perovskite oxides, such as La1-xSrxCoO3-δ (LSC), present mixed oxide/electronic conduction; however, the long-term instability due to superficial carbonation of LSC-based cathodes is a crucial drawback for their practical application.
In this study, thin film-heterostructures of alternating layers of La0.6Sr0.4CoO3-δ and Ce0.8Gd0.2O2-δ (CGO) were deposited on (110) NdGaO3 (NGO) single crystal substrates by pulsed laser deposition (PLD). The number of interfaces and the thickness were varied to obtain epitaxial structures with highly coherence layers. Moreover, two different kinds of architectures, without and with a CGO termination layer, were prepared in order to study the stability of the samples under different thermal cycles in air.
Structural characterization was made by using Rocking Curve and Reciprocal Space Mapping techniques. CGO layers are rotated 45º respect to the substrate and LSC ones due to the different sizes of cell parameters. The quality of the samples was examined by HR-TEM and all of them presented well defined interfaces (Figure 1). Electrical characterization confirms that the conductivity can be modulated by varying the number of interfaces and thickness. Samples without CGO termination are unstable in air atmosphere due to surface carbonation, which was confirmed by XPS and HR-TEM.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
Formation of X-ray emitting stationary shocks in magnetized protostellar jets
X-ray observations of protostellar jets show evidence of strong shocks
heating the plasma up to temperatures of a few million degrees. In some cases,
the shocked features appear to be stationary. They are interpreted as shock
diamonds. We aim at investigating the physics that guides the formation of
X-ray emitting stationary shocks in protostellar jets, the role of the magnetic
field in determining the location, stability, and detectability in X-rays of
these shocks, and the physical properties of the shocked plasma. We performed a
set of 2.5-dimensional magnetohydrodynamic numerical simulations modelling
supersonic jets ramming into a magnetized medium and explored different
configurations of the magnetic field. The model takes into account the most
relevant physical effects, namely thermal conduction and radiative losses. We
compared the model results with observations, via the emission measure and the
X-ray luminosity synthesized from the simulations. Our model explains the
formation of X-ray emitting stationary shocks in a natural way. The magnetic
field collimates the plasma at the base of the jet and forms there a magnetic
nozzle. After an initial transient, the nozzle leads to the formation of a
shock diamond at its exit which is stationary over the time covered by the
simulations (~ 40 - 60 yr; comparable with time scales of the observations).
The shock generates a point-like X-ray source located close to the base of the
jet with luminosity comparable with that inferred from X-ray observations of
protostellar jets. For the range of parameters explored, the evolution of the
post-shock plasma is dominated by the radiative cooling, whereas the thermal
conduction slightly affects the structure of the shock.Comment: Accepted for publication in Astronomy and Astrophysic
- …