21 research outputs found

    The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation

    Get PDF
    Here we present the first multi-model ensemble of regional climate simulations at kilometer-scale horizontal grid spacing over a decade long period. A total of 23 simulations run with a horizontal grid spacing of ∼3 km, driven by ERA-Interim reanalysis, and performed by 22 European research groups are analysed. Six different regional climate models (RCMs) are represented in the ensemble. The simulations are compared against available high-resolution precipitation observations and coarse resolution (∼ 12 km) RCMs with parameterized convection. The model simulations and observations are compared with respect to mean precipitation, precipitation intensity and frequency, and heavy precipitation on daily and hourly timescales in different seasons. The results show that kilometer-scale models produce a more realistic representation of precipitation than the coarse resolution RCMs. The most significant improvements are found for heavy precipitation and precipitation frequency on both daily and hourly time scales in the summer season. In general, kilometer-scale models tend to produce more intense precipitation and reduced wet-hour frequency compared to coarse resolution models. On average, the multi-model mean shows a reduction of bias from ∼ −40% at 12 km to ∼ −3% at 3 km for heavy hourly precipitation in summer. Furthermore, the uncertainty ranges i.e. the variability between the models for wet hour frequency is reduced by half with the use of kilometer-scale models. Although differences between the model simulations at the kilometer-scale and observations still exist, it is evident that these simulations are superior to the coarse-resolution RCM simulations in the representing precipitation in the present-day climate, and thus offer a promising way forward for investigations of climate and climate change at local to regional scales

    The first multi-model ensemble of regional climate simulations at kilometer-scale resolution. Part I: Evaluation of precipitation

    Get PDF
    Here we present the first multi-model ensemble of regional climate simulations at kilometer-scale horizontal grid spacing over a decade long period. A total of 23 simulations run with a horizontal grid spacing of ∼ 3 km, driven by ERA-Interim reanalysis, and performed by 22 European research groups are analysed. Six different regional climate models (RCMs) are represented in the ensemble. The simulations are compared against available high-resolution precipitation observations and coarse resolution (∼ 12 km) RCMs with parameterized convection. The model simulations and observations are compared with respect to mean precipitation, precipitation intensity and frequency, and heavy precipitation on daily and hourly timescales in different seasons. The results show that kilometer-scale models produce a more realistic representation of precipitation than the coarse resolution RCMs. The most significant improvements are found for heavy precipitation and precipitation frequency on both daily and hourly time scales in the summer season. In general, kilometer-scale models tend to produce more intense precipitation and reduced wet-hour frequency compared to coarse resolution models. On average, the multi-model mean shows a reduction of bias from ∼ −40 at 12 km to ∼ −3 at 3 km for heavy hourly precipitation in summer. Furthermore, the uncertainty ranges i.e. the variability between the models for wet hour frequency is reduced by half with the use of kilometer-scale models. Although differences between the model simulations at the kilometer-scale and observations still exist, it is evident that these simulations are superior to the coarse-resolution RCM simulations in the representing precipitation in the present-day climate, and thus offer a promising way forward for investigations of climate and climate change at local to regional scales. © 2021, The Author(s)

    Dynamical system analysis of a low-order tropical cyclone model

    No full text
    Tropical cyclone dynamics is investigated by means of a conceptual box model. The tropical cyclone (TC) is divided into three regions, the eye, eyewall and ambient region. The model forms a low-order dynamical system of three ordinary differential equations. These are based on entropy budget equations comprising processes of surface enthalpy transfer, entropy advection, convection and radiative cooling. For tropical ocean parameter settings, the system possesses four non-trivial steady state solutions when the sea surface temperature (SST) is above a critical value. Two steady states are unstable while the two remaining states are stable. Bifurcation diagrams provide an explanation why only finite-amplitude perturbations above a critical SST can transform into TCs. Besides SST, relative humidity of the ambient region forms an important model parameter. The surfaces that describe equilibria as a function of SST and relative humidity reveal a cusp-catastrophe where the two non-trivial equilibria split into four. Within the model regime of four equilibria, cyclogenesis becomes very unlikely due to the repelling and attracting effects of the two additional equilibria. The results are in qualitative agreement with observations and evince the relevance of the simple model approach to the dynamics of TC formation and its maximum potential intensity

    Defect microstructure and irradiation strengthening in Fe/Cu alloys and Cu bearing pressure vessel steels

    No full text
    SIGLESpecial print from: Genthon, J.P.; Roettger, H. (eds.): Reactor dosimetry, Reidel, Dordrecht, 1985, p. 549-560 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Atmospheric Dynamics of Terrestrial Planets

    No full text
    The solar system presents us with a number of planetary bodies with shallow atmospheres that are sufficiently Earth-like in their form and structure to be termed “terrestrial.” These atmospheres have much in common, in having circulations that are driven primarily by heating from the Sun and radiative cooling to space, which vary markedly with latitude. The principal response to this forcing is typically in the form of a (roughly zonally symmetric) meridional overturning that transports heat vertically upward and in latitude. But even within the solar system, these planets exhibit many differences in the types of large-scale waves and instabilities that also contribute substantially to determining their respective climates. Here we argue that the study of simplified models (either numerical simulations or laboratory experiments) provides considerable insights into the likely roles of planetary size, rotation, thermal stratification, and other factors in determining the styles of global circulation and dominant waves and instability processes. We discuss the importance of a number of key dimensionless parameters, for example, the thermal Rossby and the Burger numbers as well as nondimensional measures of the frictional or radiative timescales, in defining the type of circulation regime to be expected in a prototypical planetary atmosphere subject to axisymmetric driving. These considerations help to place each of the solar system terrestrial planets into an appropriate dynamical context and also lay the foundations for predicting and understanding the climate and circulation regimes of (as yet undiscovered) Earth-like extrasolar planets. However, as recent discoveries of “super-Earth” planets around some nearby stars are beginning to reveal, this parameter space is likely to be incomplete, and other factors, such as the possibility of tidally locked rotation and tidal forcing, may also need to be taken into account for some classes of extrasolar planet
    corecore