2,371 research outputs found
On the structure of the BBGKY hierarchy for a Boltzmann gas
Structure of BBGKY hierarchy for Boltzmann gas and particle distribution
Future Type Ia Supernova Data as Tests of Dark Energy from Modified Friedmann Equations
In the Cardassian model, dark energy density arises from modifications to the
Friedmann equation, which becomes H^2 = g(\rhom), where g(\rhom) is a new
function of the energy density. The universe is flat, matter dominated, and
accelerating. The distance redshift relation predictions of generalized
Cardassian models can be very different from generic quintessence models, and
can be differentiated with data from upcoming pencil beam surveys of Type Ia
Supernovae such as SNAP. We have found the interesting result that, once
is known to 10% accuracy, SNAP will be able to determine the sign of
the time dependence of the dark energy density. Knowledge of this sign (which
is related to the weak energy condition) will provide a first discrimination
between various cosmological models that fit the current observational data
(cosmological constant, quintessence, Cardassian expansion). Further, we have
performed Monte Carlo simulations to illustrate how well one can reproduce the
form of the dark energy density with SNAP.
To be concrete we study a class of two parameter (,) generalized
Cardassian models that includes the original Cardassian model (parametrized by
only) as a special case. Examples are given of MP Cardassian models that
fit current supernovae and CMB data, and prospects for differentiating between
MP Cardassian and other models in future data are discussed. We also note that
some Cardassian models can satisfy the weak energy condition even with a
dark energy component that has an effective equation of state .Comment: revised version accepted by Ap
Gravitational Lensing Statistics in Universes Dominated by Dark Energy
We study lens statistics in flat, low-density universes with different
equations of state for the dark energy component. Dark energy
modifies the distance-redshift relation and the mass function of dark matter
halos leading to changes in the lensing optical depth as a function of image
separation. Those effects must, however, be distinguished from effects
associated with the structure of dark matter halos. Baryonic cooling causes
galaxy-mass halos to have different central density profiles than group- and
cluster-mass halos, which causes the distribution of normal arcsecond-scale
lenses to differ from the distribution of ``wide-separation'' (\Delta\theta
\gtrsim 4\arcsec) lenses. Fortunately, the various parameters related to
cosmology and halo structure have very different effects on the overall image
separation distribution: (1) the abundance of wide-separation lenses is
exremely sensitive (by orders of magnitude) to the distribution of
``concentration'' parameters for massive halos modeled with the
Navarro-Frenk-White profile; (2) the transition between normal and
wide-separation lenses depends mainly on the mass scale where baryonic cooling
ceases to be efficient; and (3) dark energy has effects at all image separation
scales. While current lens samples cannot usefully constrain all of the
parameters, ongoing and future imaging surveys should discover hundreds or
thousands of lenses and make it possible to disentangle the various effects and
constrain all of the parameters simultaneously. (abridged)Comment: 15 pages, 11 figures, accepted for publication in Ap
Large-Scale Bulk Motions Complicate the Hubble Diagram
We investigate the extent to which correlated distortions of the luminosity
distance-redshift relation due to large-scale bulk flows limit the precision
with which cosmological parameters can be measured. In particular, peculiar
velocities of type 1a supernovae at low redshifts may prevent a sufficient
calibration of the Hubble diagram necessary to measure the dark energy equation
of state to better than 10%, and diminish the resolution of the equation of
state time-derivative projected for planned surveys. We consider similar
distortions of the angular-diameter distance, as well as the Hubble constant.
We show that the measurement of correlations in the large-scale bulk flow at
low redshifts using these distance indicators may be possible with a cumulative
signal-to-noise ratio of order 7 in a survey of 300 type 1a supernovae spread
over 20,000 square degrees.Comment: 6 pages; 4 figure
A dark energy view of inflation
Traditionally, inflationary models are analyzed in terms of parameters such
as the scalar spectral index ns and the tensor to scalar ratio r, while dark
energy models are studied in terms of the equation of state parameter w.
Motivated by the fact that both deal with periods of accelerated expansion, we
study the evolution of w during inflation, in order to derive observational
constraints on its value during an earlier epoch likely dominated by a dynamic
form of dark energy. We find that the cosmic microwave background and
large-scale structure data is consistent with w_inflation=-1 and provides an
upper limit of 1+w <~ 0.02. Nonetheless, an exact de Sitter expansion with a
constant w=-1 is disfavored since this would result in ns=1.Comment: 5 pages, 4 figures; v2: minor modifications to match published
versio
Domain Bubbles of Extra Dimensions
``Dimension bubbles'' of the type previously studied by Blau and Guendelman
[S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively
enclose a region of 5d spacetime and are surrounded by a region of 4d
spacetime, can arise in a 5d theory with a compact extra dimension that is
dimensionally reduced to give an effective 4d theory. These bubbles with thin
domain walls can be stabilized against total collapse in a rather natural way
by a scalar field which, as in the case with ``ordinary'' nontopological
solitons, traps light scalar particles inside the bubble.Comment: 13 pages, no figures; to appear in Phys.Rev.
Optimising Spectroscopic and Photometric Galaxy Surveys: Efficient Target Selection and Survey Strategy
The next generation of spectroscopic surveys will have a wealth of
photometric data available for use in target selection. Selecting the best
targets is likely to be one of the most important hurdles in making these
spectroscopic campaigns as successful as possible. Our ability to measure dark
energy depends strongly on the types of targets that we are able to select with
a given photometric data set. We show in this paper that we will be able to
successfully select the targets needed for the next generation of spectroscopic
surveys. We also investigate the details of this selection, including
optimisation of instrument design and survey strategy in order to measure dark
energy. We use color-color selection as well as neural networks to select the
best possible emission line galaxies and luminous red galaxies for a
cosmological survey. Using the Fisher matrix formalism we forecast the
efficiency of each target selection scenario. We show how the dark energy
figures of merit change in each target selection regime as a function of target
type, survey time, survey density and other survey parameters. We outline the
optimal target selection scenarios and survey strategy choices which will be
available to the next generation of spectroscopic surveys.Comment: 16 pages, 22 figures, accepted to MNRAS in dec 201
Model-Independent Constraints on Dark Energy Density from Flux-averaging Analysis of Type Ia Supernova Data
We reconstruct the dark energy density as a free function from
current type Ia supernova (SN Ia) data (Tonry et al. 2003; Barris et al. 2003;
Knop et al. 2003), together with the Cosmic Microwave Background (CMB) shift
parameter from CMB data (WMAP, CBI, and ACBAR), and the large scale structure
(LSS) growth factor from 2dF galaxy survey data. We parametrize as
a continuous function, given by interpolating its amplitudes at equally spaced
values in the redshift range covered by SN Ia data, and a constant at
larger (where is only weakly constrained by CMB data). We
assume a flat universe, and use the Markov Chain Monte Carlo (MCMC) technique
in our analysis. We find that the dark energy density is constant
for 0 \la z \la 0.5 and increases with redshift for 0.5 \la z \la 1 at
68.3% confidence level, but is consistent with a constant at 95% confidence
level. For comparison, we also give constraints on a constant equation of state
for the dark energy.
Flux-averaging of SN Ia data is required to yield cosmological parameter
constraints that are free of the bias induced by weak gravitational lensing
\citep{Wang00b}. We set up a consistent framework for flux-averaging analysis
of SN Ia data, based on \cite{Wang00b}. We find that flux-averaging of SN Ia
data leads to slightly lower and smaller time-variation in
. This suggests that a significant increase in the number of SNe Ia
from deep SN surveys on a dedicated telescope \citep{Wang00a} is needed to
place a robust constraint on the time-dependence of the dark energy density.Comment: Slightly revised in presentation, ApJ accepted. One color figure
shows rho_X(z) reconstructed from dat
- …
