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ABSTRACT

We treat the evolution in time of a spatially uniform Boltzmann gas
with no initial correlations., For the case of cut-off potentials and arbi-
trary initial velocity distribution functions, on using the expansion
parameter nrg; with n = particle density and r = range of binary potenr
tial, we show for terms of the order (nrz)2 and lower that the hierarchy
is formally self-closing even with the inclusion of many body effects; 7.e.,
at a given order in (nrz), with the exception of contributions linear in
the single particle distribution function 6f the same order, the binary
correlation function which determines the kinetic behavior of the single.
particle distribution function only depends on functions which themselves
fully determinable within a prescribed iteration procedure. The actual con-
vergence of the various‘orders of the formal expansion is discussed for

initially aribtrary velocity distributions and for linearizations around
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Basic equation In terms of the correlation functions:
gs(il,...is, vl...vs,E), § =1, 2, cuo0

the BBGKY hierarchy in the Boltzmann approximationl takes the form:
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The equations are in dimensionless units with distances in units of r,, the
range of the binary interaction and wvelocities iﬁ units of Vav the root
mean square particle velocity; therefore times are in units of rO/Vav’ the
time of a binary interaction.

Equations (1) have been obtained from the general hierarchy equa-
tions by choosing <¢>/mv§v ~v o1, with <¢> the characteristic strength of
the potential, and nrz =€, g<<1, The g, are defined in a recursive

manner from the reduced distribution functions, fs’ by the relations:

fl(l) = gl(l)

£,(1,2) = £,(1D£(2) +g,(1,2)
£4(1,2,3) = £, (DE(2£,(3) + g £,(1)g,(2,3) + 85(1,2,3) .

Expansion procedure Our expansion procedure is a version of the many tipe
scale procedure2 amended to allow for additional many space scale variations.

We assume

m
g, = Z £ g?(t,st,xl,exl,...xs,exg)




with t and x defined by: t = £, x = %, Thus we obtain

5t = an'* € Jet ° »'aﬁ ax *e aex

and we can write
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Neglectvof-the ent andﬁugexi_ sgaies (ﬁ EVZQ for spatially homogeneous
distribution functions has beén justified in‘earlier work3.

ﬁutiiated Pigggrchx  On equating ghé coefficient of each pbwer pf € to
zero in the expansion of " (1§ ve gbtain the baéic hierarchy: ' .
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‘For m=0 we use ghé above. For m = 1 we promote térms (to be specified

iater)'from‘the m= 2 equation, which itself next receives contributions



from the m = 3 equation. Therefore in place of thé. basic hierarchy for

m > 1 we can write a mutilated hierarchy of the form

ng

. 0 m g w-1_ ¥ $ n m-n

o 4 H g + g 7~"Z 2 e 8(1,99!)3” (j,.,,)
ot s °s et T8 " 2 j=1 iﬁj a1 o &0

- m-l s
n m-1-n m 1
-.ial j[ }< ei,8+l‘ ngo QZ 8u(i"’*)ss+l a(3+1’019) Bl dﬂ
L PP L | , |
T A(S ’m) + SA(S’ml)c ’ . o : | (1")

For m=0 or m=1, A(s,m)‘* 0. For m > 2 we choose:

A(s,m) = - 3%5 g:"l‘-' !,1;‘ 8?1 + 4 (s,m)

with A'(s,m) still to be specified.
Determination of gg On using equation (1") for m = 0 for a time 71 .of

~order unity (t % collision duration) we have for Ixi 8+1| $ T,

0 For1 7 ' '
8S+1(t) = e 7 (azlg (Lysoort=T) g +1 a(s+1 t~1) + g§+l(t—ri)
q{l 3q(1.,,.,t) gs+1 a(a+-1‘,...’.,u) +Glo(if,sﬂ'%,','.'s*l ;)
and
ei,s%l = "'Hg+1 + Hg toVe ! 3;3'* + Asll . (3)

s+l

If and only 1f i and s+l interact with each other from t-t to t,.
then 610 and 611 are zero. There are no secular ¢ontributions involving

terms in §,, and 611, since these are only non-zero for times of order

unity.

- (2)



By means of (3)

can be put in the form

0 0
0 ] -H T s ~-H
R(s,0) = <%s Z‘J e s+l ) o St1 Hg+1
ifl Ixi,s+1l‘”o i=l'hi,s+1!5”o
8 ; ' o -H .T 8 -H T
) e PP e ") 11 s+1;>
i?l;!xi,g+1‘f§§ Lo 15?ﬁtx;,s+1l<55,
o i{2+1T
X (Il(i,s+1,1,.,.s,t) te T T 8,) Ay )
with :
| : 0 0 0

The terms linear in ”HS

and (2), the right hand side of (1')

0

and Hs+1

(with the addition of terms of order

for m=1

€)

~ contribute to a total derivative with respect to time of quantity of order

unity, The terms linear

can be put in the form

A(s,0) + B(s,0) + G(s,0) + ¢

with

A(s,0)
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with dcs+1 denoting a surface element. As long as. all of the s particles
in the collection (1, 2,...,s) are further apart than distance of order
unity, 612 = (0, It has been shown earlier3 for g; to be bounded that -one

must take:}
a'n 1 0o _
(Bet + HS> g A(s,0)

This completes the definition of gg.

Deterxmination of gi in general Within the m = 2 equations of (1") for

\x. ‘ < r, we have as in the case of the m = 1 equations:
i,s+1 o]

0
_H ¥
1 B s+1” 1
gs+1(t) = -E—o -Z_l g (1,. e) gs+l a(s+l,”.,) + By (t Ta
% Z
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n=0 o=l o +1 -0, 4
+ 8,08t 1.0, t) . (5)

For the particles (1,...,s) far apart we assume that 620 is small com-

pared to the terms linear in e . This has been verified in some
detail for s = 1, 2 and 3, where one finds that 620 is characteristically of

-H .1
order t 1 or x 1 compared to the terms linear in e . (Here and



afterward x 1is taken to be the minimum interparticle separation of the s

particles,)
The terms, excluding A(s,m) + gA(s,m1l), on the right hand side
of (1") for m = 2 can therefore be written:
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By coupling the arguments following (4) with considerations which put the

integral terms in Eq. (1") for m =1 of order t_1 or x—1 compared with

g;, one finds that the dominant terms in (6) are linear in

s+l ~ i % € I - (8)

The contribution from (8) within (6) may be put in the form

A(s,1) + B(s,l) + C(s,1) + 622



with

A(s,1)

B(s,1)

C(s,l) =
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The term: in §22 is of erder tfl. or x-l compared to A + B. The term

linear in gg gi(s+l) evaluated at x 1 yields a higher order

i,s+1|r Vi,s+
correction to gg which we will neglect.

We are free to "promote'" the A(s,l) term to the lower order equa-
tion with m = 1; since it leads to exponential damping and does not result

in an essentially more complicated equation to solve, we do so. Therefore

we have for (1") with m 22, s 2 2:

A'(5,2) = -A(s,1) + A"(s,2)

The term in A" contains terms which if they were not "promoted" would lead
to divergent behavior in gi. Such terms can be estimated by usage of the
values obtained for gi on the omission of the term in eA(s,2),

For s = 2, B(s,1) is of order lxlzl_l for |x12|>>1° Consequently

the contribution to gg through (1") is logarithmic. Therefore we write
1 1 1

and" "promote" the terms within B(2,1) 1linear in (g;)l. For s = 3 the con-
tribution to g§ is finite (at least as concerns X, v arguments which
ultimately contribute to g, for lxlzl < ro)u Hence we do not "promote"
B(3,1). For s > 4 we assume that the conclusion for B(s,1) is the same as
for B(3,1).

Hence the solution for g:, s > 3 1s a matter of simple iteration

(subject to a knowledge of gi and g%)°
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Solution for _g; in particular For g; we have from (1"):

2 .
3 1. .0 I | 1.1 0 1
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l"i,s""“"éx’"‘i3 Vi3
0.1, 10
- O 1
1281 81 * 81 8p)
2 —ng
= ¢ ] J dy vy doy lvg,| e

= 23 gl=rgaxsq 1vy3

X

(87(3) (), (oeens®) + (8D Bsunns®) £)(D)

2 T 1
- £ i:-E.:]_ J d3 V3 d03 l“:,.?»,il e 81(1) (32)1 (3,t)
%y 5l=r x5l vy

+ B(20) + .[R(2,0) - A(2,0) - B(2,0)] . (9)
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We write
g, = (g, + (@)g+ (&),
(8 = (g;)aJl + (gé)le
(85 = (&g)y, + (&),
(8 = BPoj1 * &y
(85 = (&g (10)
with:
Eﬁ% + Hg + e 3§E~+ £ Hi + ¢ % [ dy vy dog [vy | gg(Bi} (gg)afz
t=1 -, ° > ’

ixi,Bl r“’xi3||hvi3

-8 (g) gr + By 80 = [R(2,0) - A2,0) - B(2,0)]

(11)

2
3 0, 3 1 0 1
{%E’ T H e telte izl J dy vy dog |vy 4 31(351 (8)4)f1
lxi,3|=ro’xi§||“vi?
= B(2,0)
(12)
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> .0 2 1, . §
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0
2 —HBT i
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13175 %13 17743 (13)
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1 0,, 30 1
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The term [R(2,0) - A(2,0) -B(2,0)] falls off with increasing |x12|
more rapidly than lxlztf . Consequently (g;&l , does not contribute to
secular behavior in (gi). The term B(2,0) varies with increasing lx12|

as ixlzl—z. Consequently the right hand side of (13) 1is of the order

lx12|—1 and the right hand side of (14) is of order ¢ 2n(blxlzl) fox

ENET R

For e€x >> 1 one has that both (gé)le and (g;)Y are of the form

-1 1 :
|x12] N e 7> from which (gz)Y is of order ¢ for
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Ee—asx with o positive, of order unity, and bounded from below,

Determination of gi and gé in particular We now turn to the determina-
tion of gg, The right hand side of (1") for m = 3 can be written, analog-

ously to. (6) and (7):

=] -H T 8 -H T
W ) I e st _ § o st 0
$ 4=1 |x |< r i=1 |x e+l
+1 o] i,s+l
0
s -H T S
] s+1
- . 8
* 121 Jb|x |<r Ter1 ™) * o o i 121 |x |<x 11
i,s+1 0 i,s+l’ "o
Hg+1T ;
5 (13(i,s+l,l,.°°,s,t) + e 630) dﬂs+1
(15)
with
. 2 n 2-n
Is(i,s+1;l,,..,s,t) =z z §‘ ga(i,,a,) gs+l~a(s+l’°°°)
n=0 q=1
+ g2, (t=1) (16)
Batl ¢ "7

. " 2 . .
One may first calculate the various gs(t - 1) without the contri-
butions A'(s,3) and then determine the resulting corrections from the

A'(s,3). For s = 3, at least as concerns gg which contributes directly

0
oa THT
to g, for !xlzl < T, the termin vy, 3;; e ~ g3(e-T)

dees not contribute to g, in order 32 or lower. We assume that the

iteration with A'(s}3) does not decrease the order of gg, and we take the

s+l
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size of this term as reﬁresentative of the size of other terms inolving
gg(t - 1) within (15). Also we take the contribution from s ;AS to be.
a bound on the contributions.from s 3 4, so that these too can be neglected
in finding g, to order ez for

‘xlzl < To

For A'(2,3) we note that due to the presence of (g%)Y one expects .

that one may write
2 2 2
= j +
&) 8201 822

with g§11 of order unity on a length scale of order the mean free path and

a.time scale of order the mean free time.  Correspondingly we have

0
2 -H,(i,3)
1 ] 2 7 o,, 2 0 2
vens 1] ey vy e CHONARONAR
=y 5l<zg
and

3 2 0 2 3 2 12 2 .. 0,
3¢ fzj1 Y P2 Bz1 T C wer Bzjn YoM gy O1p(E o) gl+*g1|1(2)g?)

0
2 -H,(1i,3)T
9 2= Q 2 0, 2
Ixi,3l<r$
; "HgT 0 1
- L J dy vy dog vy | e 7 (/) (gyHsee0))))
%5 l=zox 511 V43
0 1 2
+EW (GO - T J 4y vy 4o,

0 |x131=r5 ’ xi3||’vi3
“HyT g 1
lvg 41 e g1 (1) (g(3,...,0)) (17
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For gglz we note that the equation is of the form:

B 1o

9 0 9 1 0 2
{ +H +e¢ +eH, # < d3v3d03lv3’i|g1(3) } 822

W S

at 2 Jdet .
i=1
%, 3l = Toomy3ll vy
(g2 (Lg) + g2 (2)g +gigh) = s(1, 2, t, et) .
012 (811108 + 81 )50208; * 8,8 > S b
(18)
S decreases sufficiently rapidly with increasing |x12| “that to order unity

the solution for , subject to a knowledge of gi and g%i7, is obtained

2
€212
without iteration.

Discussion of Eq. (17) and comments on the general structure
Equation (17) treats the many body effects whose existence has been

previcusly noted by other auth@rs4’5’6’7° The behavior in Eq. (17) is not
entirely unexpected since the bineary correlation function as distances)of
order the mean free path in general is of order 820 One expects that parts
of the binary correlation function in order higher than e2 will have equa~
tions whose homogeneous parts are similar in form.éo the left hand side of
(17). Since the correlation function for n. bodies at distances of order

eZ(n—l) and

the mean free path from each other is in general of order
higher, part of the n body correlation function will satisfy an integro-

differential equation whose homogeneous terms are acted on by the operator

0,
—Hn(l,n+1)T

9 .
{ e . .v . — e
1 4 U ntl otl,i 8xn+1

lxi,n+1|<ro

m
B

9e

< + H + e —é—=+ H -
. i

< F e(,ntD) g) ()
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with ¢€(i,n+l) exchanging the labels i and n+l,

Form of single particle distribution function

The single particle distribution function g is aof the form.

1 2 1 22

_ 0
g1 = gl + 8810 + € in Egll + € gl

1 1

given by the equations:

0
Bg,i

- 1

%
r} 09
= ©

Qo
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ot ost

it

0
£
, | 0
1lim dn
Lin ) 0y58
(1-1im) g) 4%,
£osoo %12 8

Lo

f
) 1
1im J 12(1 . 2) (gz)u do

f
(1-1im) J 12 3(gz) S(1/:-t) da,

e

) o (ol 1
lim Jelz(Pl<g2)a + (1-F,) (8,) 5)d,

Lo

1
(1-1im) | 6., (1-P.-P_-P ) (g,)  dQ
£aoo j 1217F17Fp7F3) (8)) o 4%,
(1-1im) Je (g))  S(t-1/¢) da
oo 1253827 2

P

(1-1im) J 0., (85), + (1-P) (87)) d9,

§ o]

¢

-

with gg, 810° 811 and gi of order unity. Its behavior for all times ‘is

i(19)

(20)

(21) -

(22)

(23)

(24)

JelZ(Pz(g;)a FR, (g5 + (8) + (8)) + cgj)dn, (25)
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Here

S(x) = 1, x>0

S(x)

0, x <0

and the operators. P, denote the existence of contributions from the func~
tions.following them.

Equation (20) is the Boltzmann equation. Equations (22) and (24) are
linearized spatially homogeneous Boltzmann equations with known source terms.

From Eq. (25) the behavior due to g;ll is given by

2
%1 |1
5= = O (26)
2
dg 0
11 =Hot
_ 2% 2 0 2 0
== 7,
2 0 2

Within (27), the term in g%ll is independent of gi|l° The form
of (27) follows from the fact that the inhomogeneous integral terms in )]

‘are of order .

Description of the asymptotic time behavior of &y o order 53
I1f the deviation of gg from its asymptotic value in time approaches
zero exponentially or more rapidly, then g1 ’ g1 and g2 - g2 approach
10° °11 1 1)1
their asymptotic values exponentially. However, a normal mode8’9 analysis of.
(17) and (27) reveals that gi]l may in principle approach its asymptotic value

372

algebraically as for t >> 1,
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If the deviation of gg from its asymptotic value approaches zero
less rapidly than exponentially, then in general one cannot.even conclude
that gio and gi approach limits.

However, provided giO, gil and gi]l remain bounded one can, after
a‘sufficiently long time, linearize (20) in the deviations of gg from its
asymptotic Maxwellian velocity form. Then, for cut-off Maxwellian or "harder"
cut-off potentials}O it appears’that the deviation of gg from its asymptotic

value decays exponentially in time and the corresponding conclusions as to

1 1 2 2 2
glo, 811’ gl - glll and glll fOllOW.

Finally for the potentials just mentioned, if gg has- a constant

small deviation from the Maxwellian velocity distribution and one linearizes

in this small deviation, the contribution from those modes which yield pre-

t—3/2

vious contribution is finite.
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