ON THE STRUCTURE OF THE BBGKY HIERARCHY FOR A BOLTZMANN GAS
R. Goldman

Institute for Fluid Dynamics and Applied Mathematics University of Maryland, College Park, Maryland
and

E. A. Frieman<br>Department of Astrophysical Sciences<br>Princeton University<br>Princeton, New Jersey

ABSTRACT

We treat the evolution in time of a spatially uniform Boltzmann gas with no initial correlations. For the case of cut-off potentials and arbitracy initial velocity distribution functions, on using the expansion parameter $\mathrm{nr}_{0}^{3}$, with $\mathrm{n}=$ particle density and $r_{0}=$ range of binary posentil, we show for terms of the order $\left(n r_{0}^{3}\right)^{2}$ and lower that the hierarchy is formally self-closing even with the inclusion of many body effects; i.e., at a given order in $\left(n r_{0}^{3}\right)$, with the exception of contributions linear in the single particle distribution function of the same order, the binary correlation function which determines the kinetic behavior of the single particle distribution function only depends on functions which themselves fully determinable within a prescribed iteration procedure. The actual convergence of the various orders of the formal expansion is discussed for initially aribtrary velocity distributions and for linearizations around Maxwellian velocity distributions.


Basic equation In terms of the correlation functions:

$$
g_{s}\left(\tilde{x}_{1}, \ldots \tilde{x}_{s}, v_{1} \ldots v_{s}, \tilde{t}\right), \quad s=1,2, \ldots,
$$

the BBGKY hierarchy in the Boltzmann approximation ${ }^{1}$ takes the form:

$$
\begin{align*}
\frac{\partial g_{s}}{\partial \tilde{t}} & +H_{s} g_{s}-\sum_{j=1}^{s} \sum_{i<j} \sum_{\alpha=1}^{s-1} \theta_{i j} g_{\alpha}(i, \ldots) g_{s-\alpha}(j, \ldots) \\
& =\sum_{i=1}^{s} \int \theta_{i, s+1}\left(\sum_{\alpha=1}^{s} g_{\alpha}(i, \ldots) g_{s+1-\alpha}(s+1, \ldots)+g_{s+1}\right) d \Omega_{s+1} . \tag{1}
\end{align*}
$$

The equations are in dimensionless units with distances in units of $r_{0}$, the range of the binary interaction and velocities in units of $v_{a v}$ the root mean square particle velocity; therefore times are in units of $r_{0} / v_{a v}$, the time of a binary interaction.

Equations (1) have been obtained from the general hierarchy equations by choosing $\langle\phi\rangle / \mathrm{mv}_{\mathrm{av}}^{2} \sim 1$, with $\langle\phi\rangle$ the characteristic strength of the potential, and $\mathrm{nr}_{0}^{3}=\varepsilon, \varepsilon \ll 1$. The $\mathrm{g}_{\mathrm{s}}$ are defined in a recursive manner from the reduced distribution functions, $f_{s}$, by the relations:

$$
\begin{gathered}
f_{1}(1)=g_{1}(1) \\
f_{2}(1,2)=f_{1}(1) f_{1}(2)+g_{2}(1,2) \\
f_{3}(1,2,3)=f_{1}(1) f_{1}(2) f_{1}(3)+\sum_{p} f_{1}(1) g_{2}(2,3)+g_{3}(1,2,3) .
\end{gathered}
$$

Expansion procedure Our expansion procedure is a version of the many time scale procedure ${ }^{2}$ amended to allow for additional many space scale variations. We assume

$$
g_{s}=\sum_{m=0}^{\infty} \varepsilon^{m} g_{s}^{m}\left(t, \varepsilon t, x_{1}, \varepsilon x_{1}, \ldots x_{s}, \varepsilon x_{s}\right)
$$

with $t$ and $x$ defined by: $t=\tilde{t}, x=\tilde{x}$, Thus we obtain

$$
\frac{\partial}{\partial \tilde{t}}=\frac{\partial}{\partial t}+\varepsilon \frac{\partial}{\partial \varepsilon t} ; \quad \frac{\partial}{\partial \tilde{x}}=\frac{\partial}{\partial x}+\varepsilon \frac{\partial}{\partial \varepsilon \tilde{x}}
$$

and we can write

$$
H_{s}=H_{s}^{0}+\varepsilon H_{s}^{I}
$$

with

$$
H_{s}^{0}=\sum_{i=1}^{s} v_{i} \cdot \frac{\partial}{\partial x_{i}}-\sum_{i=1}^{s} \sum_{j=1}^{\sum_{1}} \frac{\partial \phi}{\partial x_{i}}\left(x_{j i}\right) \cdot\left(\frac{\partial}{\partial y_{i}}-\frac{\partial}{\partial v_{j}}\right)
$$

and

$$
H_{s}^{1}=\sum_{i=1}^{s} v_{i} \cdot \frac{\partial}{\partial \varepsilon \mathbf{x}_{i}} ; \frac{\partial \phi}{\partial \varepsilon \mathbf{x}_{i}} \equiv 0 .
$$

Neglect of the $\varepsilon^{n} t$ and. $\varepsilon^{n} x_{i}$ scales ( $n \geqslant 2$ ) for spatially homogeneous $i$ distribution functions has been justified in earlier work ${ }^{3}$,

Mutilated hierarchy On equating the coefficient of each power of $\varepsilon$ to zero in the expansion of (1) we obtain the basic hierarchy:

$$
\begin{align*}
\frac{\partial g_{s}^{m}}{\partial t} & +H_{s}^{0} g_{s}^{m}+\frac{\partial}{\partial \varepsilon t} g_{s}^{m-1}+H_{s}^{1} g_{s}^{m-1} \\
& -\sum_{n=0}^{m} \sum_{j=1}^{s} \sum_{i<j} \sum_{\alpha=1}^{s-1}{ }_{i j} g_{\alpha}^{n}(i, \ldots,) g_{s-\alpha}^{m-n}(j, \ldots) \\
& =\sum_{i=1}^{s} \int_{i, s+1}\left(\sum_{n=0}^{\beta_{1}} \sum_{\alpha=1}^{s} g_{\alpha}^{n}(1, \ldots) g_{s+1-\alpha}^{m-1-n}(s+1, \ldots)\right. \\
& \left.\quad+g_{s+1}^{m-1}\right) \quad{ }_{d} \Omega_{s+1}
\end{align*}
$$

For $m=0$ we use the above. For $m=1$ we promote terms (to be specified later) from the $m=2$ equation, which itself next receives contributions
from the $m=3$ equation. Therefore in place of the basic hierarchy for $m \geqslant 1$ we can write a mutilated hierarchy of the form

$$
\begin{align*}
\frac{\partial g_{s}^{m}}{\partial t} & +H_{s}^{0} g_{s}^{m}+\frac{\partial}{\partial \varepsilon t} g_{s}^{m-1}-\sum_{n=0}^{m} \sum_{j=1}^{s} \sum_{i<j} \sum_{\alpha=1}^{s-1} \theta_{i j} g_{\alpha}^{n}(1, \ldots) g_{s-\alpha}^{m-n}(j, \ldots) \\
& -\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|<\varepsilon_{0}} \theta_{i, s+1} \sum_{n=0}^{m-1} \sum_{\alpha=1}^{s} g_{\alpha}^{n}(1, \ldots) g_{s+1-\alpha}^{m-1-n}(s+1, \ldots)+g_{s+1}^{m-1} d \Omega_{s+1} \\
& -\Delta(s, m)+\varepsilon \Delta(s, m+1) . \tag{1"}
\end{align*}
$$

For $m=0$ or $m=1, \Delta(s, m)=0$. For $m \geqslant 2$ we choose:

$$
\Delta(s, m)=-\frac{\partial}{\partial \varepsilon t} g_{s}^{m-1}-H_{s}^{1} g_{s}^{m-1}+\Delta^{\prime}(s, m)
$$

with $\Delta^{\prime}(s, m)$ still to be specified.
Determination of $g_{s}^{0}$ On using equation (1") for $m=0$ for a time $\tau$ of order unity ( $\tau \approx$ collision duration) we have for $\left|x_{i, s+1}\right| \leqslant r_{0}$

$$
\begin{align*}
g_{s+1}^{0}(t) & =e^{-H_{s+1}^{0}}{ }^{\top}\left(\sum_{\alpha=1}^{s} g_{\alpha}^{0}(i, \ldots, t-\tau) g_{s+1-\alpha}^{0}(s+1, t-\tau)+g_{s+1}^{0}(t-\tau)\right) \\
& -\sum_{\alpha=1}^{s} g_{\alpha}^{0}(1, \ldots, t) g_{s+1-\alpha}^{0}(s+1, \ldots, t)+\delta_{10}(1, s+1 ; 1, \ldots, s+1, t) \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\theta_{i, s+1}=-H_{s+1}^{0}+H_{s}^{0}+v_{s+1} \cdot \frac{\partial}{\partial x_{s+1}}+\delta_{11} . \tag{3}
\end{equation*}
$$

If and only if $i$ and $s+1$ interact with each other from $t-\tau$ to $t$, then $\delta_{10}$ and $\delta_{11}$ are zero. There are no secular contributions involving terms in $\delta_{10}$ and $\delta_{11}$, since these are only non-zero for times of order unity.

By means of (3) and (2), the right hand side of (1") for $m=1$ can be put in the form

$$
\begin{align*}
R(s, 0) & \equiv\left(H_{s}^{0} \sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|<r_{0}} e^{-H_{s+1}^{0}}-\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right| \leq r_{0}} e^{-H_{s+1}^{0}{ }^{\tau}} H_{s+1}^{0}\right. \\
& +\sum_{i=1}^{s}\left|x_{i, s+1}\right|<r_{0}\left(v_{s+1}^{\left.-v_{i}\right)} \cdot \frac{\partial}{\partial x_{s+1}} e^{-H_{s+1}^{0}}+\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|<r_{11}}^{\delta_{11}} e^{-H_{s+1}^{0}}\right) \\
& \times\left(I_{1}(i, s+1,1, \ldots s, t)+e^{H_{s+1}^{0}} \delta_{10}\right) d{ }_{s+1} \tag{4}
\end{align*}
$$

with

$$
I_{1}(i, s+1,1 \ldots s, t) \equiv\left[\sum_{\alpha=1}^{s} g_{\alpha}^{0}(i, \ldots, t-\tau) g_{s+1-\alpha}^{0}(s+1, t-\tau)+g_{s+1}^{0}(t-\tau)\right] .
$$

The terms linear in $H_{S}^{0}$ and $H_{s+1}^{0}$ (with the addition of terms of order $\varepsilon$ ) contribute to a total derivative with respect to time of quantity of order unity, The terms linear in $v_{s+1}-v_{\dot{i}}\left(\equiv v_{s+1, i}\right)$ have a contribution which can be put in the form

$$
\mathrm{A}(\mathrm{~s}, 0)+\mathrm{B}(\mathrm{~s}, 0)+\mathrm{C}(\mathrm{~s}, 0)+\delta_{12}
$$

with

$$
\begin{aligned}
& A(s, 0)=-\sum_{i=1}^{s} \iint_{\left|x_{i, s+1}\right|=r_{0}, x_{i, s+1}| | v_{s+1, s+1}}{ }^{v_{s+1}}{ }^{d \sigma} v_{s+1, i} \mid g_{1}^{0}(s+1) g_{s}^{0}(t) \\
& B(s, 0)=\sum_{i=1}^{s} \int d_{3} v_{s+1} d \bar{d}_{s+1}\left|v_{s+1, i}\right| e^{-H_{s+1}^{0}{ }^{\tau} g_{1}^{0}(s+1) g_{s}^{0} .} \\
& \left|x_{1, s+1}\right|=r_{d} ; x_{i, s+1}| | v_{i, s+1} \\
& +\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|=r_{0}} d_{3+1} v_{s+1}^{d \sigma_{s+1}}{ }_{s+1}\left|v_{s+1, i}\right| e^{-H_{s+1}^{0}{ }^{\tau} g_{1}^{0}(i) g_{s}^{0}(s+1)}
\end{aligned}
$$

$$
\begin{aligned}
C(s, 0)= & \sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|^{s} r_{o}} d_{3} v_{s+1} d \sigma_{s+1} v_{s+1, i} e^{-H_{s+1}^{0} \tau^{\tau}} \\
& \times\left(\begin{array}{cc}
\sum_{\alpha=2}^{s-1} & g_{\alpha}^{0}(i, \ldots) g_{s+1-\alpha}^{0}(s+1, \ldots)+g_{s+1}^{0}
\end{array}\right)
\end{aligned}
$$

with $\mathrm{d} \sigma_{\mathrm{s}+1}$ denoting a surface element. As long as all of the $s$ particles in the collection ( $1,2, \ldots, s$ ) are further apart than distance of order unity, $\delta_{12}=0$. It has been shown earlier ${ }^{3}$ for $g_{s}^{1}$ to be bounded that one must take:

$$
\left(\frac{\partial}{\partial \varepsilon t}+H_{s}^{1}\right) g_{s}^{0}=A(s, 0)
$$

This completes the definition of $\mathrm{g}_{\mathrm{s}}^{0}$.
Determination of $g_{s}^{1}$ in general Within the $m=2$ equations of (1") for $\left|x_{i, s+1}\right|<r_{0}$ we have as in the case of the $m=1$ equations:

$$
\begin{align*}
g_{s+1}^{1}(t) & =e^{-H_{s+1}^{0}}\left[\sum_{n=0}^{1} \sum_{=1}^{s} g_{\alpha}^{n}(i, \ldots) g_{s+1-\alpha}^{1-n}(s+1, \ldots)+g_{s+1}^{1}(t-\tau)\right] \\
& -\sum_{n=0}^{1} \sum_{\alpha=1}^{s} g_{\alpha}^{n}(i, \ldots t) g_{s+1-\alpha}^{1-n}(s+1, \ldots) \\
& +\delta_{20}(i, s+1 ; 1, \ldots, s+1, t) \tag{5}
\end{align*}
$$

For the particles $(1, \ldots, s)$ far apart we assume that $\delta_{20}$ is small compared to the terms linear in $e^{-\mathrm{H}_{\mathrm{s}+1^{\top}}^{\top}}$. This has been verified in some detail for $s=1,2$ and 3 , where one finds that $\delta_{20}$ is characteristically of order $t^{-1}$ or $x^{-1}$ compared to the terms linear in $e^{-H^{0}} s+1^{\tau}$. (Here and
afterward $x$ is taken to be the minimum interparticle separation of the $s$ particles.)

The terms, excluding $\Delta(s, m)+\varepsilon \Delta(s, m+1)$, on the right hand side of (1") for $m=2$ can therefore be written:

$$
\begin{align*}
& \left(H_{s}^{0} \sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|<r_{o}} e^{-H_{s+1}^{0}{ }^{\tau}}-\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|<r_{0}} e_{i}^{-H_{s+1}^{0}}{ }^{H_{s+1}^{0}}\right. \\
& \left.+\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right| r_{o}}^{\left(v_{s+1}-v_{i}\right)} \cdot \frac{\partial}{\partial x_{s+1}} e^{-H_{s+1}^{0}{ }^{\tau}}+\sum_{i=1}^{s} \int_{\left.\right|_{i, s+1} \mid<r_{o}} \delta_{11} e^{-H_{s+1}^{0}}\right) \\
& \times \quad\left(I_{2}(i, s+1,1, \ldots, s, t)+e^{H_{s+1}^{0}{ }^{\tau}} \delta_{20}\right) d \Omega_{s+1} \tag{6}
\end{align*}
$$

with

$$
\begin{equation*}
I_{2}(i, s+1 ; 1, \ldots, s, t) \equiv\left[\sum_{n=0}^{1} \sum_{\alpha=1}^{s} g_{\alpha}^{n}(i, \ldots) g_{s+1-\alpha}^{1-n}(s+1, \ldots)+g_{s+1}^{1}(t-\tau)\right] \tag{7}
\end{equation*}
$$

By coupling the arguments following (4) with considerations which put the integral terms in Eq. (1") for $m=1$ of order $t^{-1}$ or $x^{-1}$ compared with $\mathrm{g}_{\mathrm{s}}^{1}$, one finds that the dominant terms in (6) are linear in

$$
\begin{equation*}
\left(v_{s+1}-v_{i}\right) \cdot \frac{\partial}{\partial x_{s+1}} e^{-H_{s+1}^{0}} I_{2} \tag{8}
\end{equation*}
$$

The contribution from (8) within (6) may be put in the form

$$
\mathrm{A}(\mathrm{~s}, 1)+\mathrm{B}(\mathrm{~s}, 1)+\mathrm{C}(\mathrm{~s}, 1)+\delta_{22}
$$

with

$$
\begin{aligned}
& A(s, 1)=-\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|=r_{o}, x_{i, s+1} \mid} d_{3} v_{s+1}{ }^{d \sigma_{s+1}}\left|v_{s+1, i}\right| g_{1}^{0}(s+1) g_{s}^{1}(t) \\
& B(s, 1)=\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|=r_{o}, x_{i, s+1}| | v_{i, s+1}}^{d_{3} v_{s+1}} d \sigma_{s+1}\left|v_{s+1, i}\right| e^{-H_{s+1}^{0}}{ }^{\tau} \\
& \times \quad\left(g_{1}^{0}(s+1) g_{s}^{1}(i, t)+g_{s}^{1}(s+1, \ldots t) g_{1}^{0}(i)\right) \\
& -\sum_{i=1}^{\dot{E}} \int_{\left|x_{i, s+1}\right|=r_{0}, x_{i, s+1}| | v_{i, s+1}}^{d_{3} v_{s+1} d \sigma_{s+1}\left|v_{s+1, i}\right| e^{-H_{s+1}^{0} \tau} g_{1}^{0}(i) g_{s}^{1}(s+1, t)} \\
& C(s, 1)=\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right| r_{o}}^{d \Omega_{s+1}} \psi_{s+1, i} \cdot \frac{\partial}{\partial x_{s+1}} \quad e^{-H_{s+1}^{0}{ }^{\tau}} \\
& \times\left[\sum_{n=0}^{1} \sum_{\alpha=2}^{s-1} g_{\alpha}^{n}(i, \ldots) g_{s+1-\alpha}^{1-n}(s+1, \ldots, t-\tau)+g_{1}^{1}(i, t-\tau) g_{s}^{0}\right. \\
& \left.g_{s}^{0}(i, \ldots, t-\tau) g_{1}^{1}(s+1, t-\tau)+g_{s+1}^{1}(s+1, t-\tau)\right] .
\end{aligned}
$$

The term in $\delta 22$ is of erder $t^{-1}$. or $x^{-1}$ compared to $A+B$. The term linear in $g_{s}^{0} g_{1}^{1}(s+1)$ evaluated at $x_{i, s+1} \|-v_{i, s+1}$ yields a higher order correction to $g_{s}^{0}$ which we will neglect.

We are free to "promote" the $A(s, 1)$ term to the lower order equation with $m=1$; since it leads to exponential damping and does not result in an essentially more complicated equation to solve, we do so. Therefore we have for ( $1^{\prime \prime}$ ) with $m \geqslant 2, s \geqslant 2$;

$$
\Delta^{\prime}(s, 2)=-A(s, 1)+\Delta^{\prime \prime}(s, 2)
$$

The term in $\Delta^{\prime \prime}$ contains terms which if they were not "promoted" would lead to divergent behavior in $g_{s}^{2}$. Such terms can be estimated by usage of the values obtained for $g_{s}^{1}$ on the omission of the term in $\varepsilon \Delta(s, 2)$.

$$
\text { For } s=2, B(s, 1) \text { is of order }\left|x_{12}\right|^{-1} \text { for }\left|x_{12}\right| \gg 1 \text {. Consequently }
$$ the contribution to $\mathrm{g}_{2}^{2}$ through ( $1^{\prime \prime}$ ) is logarithmic. Therefore we write

$$
g_{2}^{1}=\left(g_{2}^{1}\right)_{1}+\left(g_{2}^{1}\right)_{2}
$$

and "promote" the terms within $B(2,1)$ linear in $\left(g_{2}^{1}\right)_{1}$. For $s=3$ the contribution to $g_{3}^{2}$ is finite (at least as concerns $x, v$ arguments which ultimately contribute to $g_{2}$ for $\left|x_{12}\right|<r_{0}$ ). Hence we do not "promote" $B(3,1)$. For $s \geqslant 4$ we assume that the conclusion for $B(s, 1)$ is the same as for $B(3,1)$.

Hence the solution for $g_{s}^{1}, s \geqslant 3$ is a matter of simple iteration (subject to a knowledge of $\mathrm{g}_{1}^{1}$ and $\mathrm{g}_{2}^{1}$ ).

Solution for $g_{2}^{1}$ in particular For $g_{2}^{1}$ we have from (1"):

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t} g_{2}^{1}+H_{2}^{0} g_{2}^{1}+\varepsilon \frac{\partial}{\partial \varepsilon t} g_{2}^{1}+\varepsilon H_{2}^{1} g_{2}^{1}+\varepsilon \sum_{i=1}^{2} \int_{\left|x_{i, s}\right|=r_{d,}, x_{i 3} \|-v_{i 3}} d_{3} v_{3} d \sigma_{3}\left|v_{3 i}\right| g_{1}^{0}(3)\right] g_{2}^{1}} \\
& -\theta_{12}\left(g_{1}^{0} g_{1}^{1}+g_{1}^{1} g_{1}^{0}\right) \\
& =\varepsilon \sum_{i=1}^{2} \iint_{\left|x_{i 3}\right|=r_{i,}, x_{i 3}| | v_{i 3}}^{d_{3} v_{3} d \sigma_{3}\left|v_{3 i}\right| e^{-H_{3}^{0} \tau}} \\
& \times \quad\left(g_{1}^{0}(3)\left(g_{2}^{1}\right)_{1}(i, \ldots, t)+\left(g_{2}^{1}\right)_{1}(3, \ldots, t) g_{1}^{0}(i)\right) \\
& -\varepsilon \sum_{i=1}^{2} \int \underset{\left|x_{i 3}\right|=r_{0}, x_{i 3} \mid \|_{3, i}-v_{i 3}}{d_{3} v_{3} d \sigma_{3}\left|v_{2}\right|} e^{-H_{3}^{0} \tau} g_{1}^{0}(i)\left(g_{2}^{1}\right)_{1}(3, t) \\
& +B(2,0)+[R(2,0)-A(2,0)-B(2,0)] \quad . \tag{9}
\end{align*}
$$

We write

$$
\begin{align*}
& g_{2}^{1}=\left(g_{2}^{1}\right)_{\alpha}+\left(g_{2}^{1}\right)_{\beta}+\left(g_{2}^{1}\right)_{\gamma} \\
& \left(g_{2}^{1}\right)_{1}=\left(g_{2}^{1}\right)_{\alpha \mid 1}+\left(g_{2}^{1}\right)_{\beta \mid 1} \\
& \left(g_{2}^{1}\right)_{2}=\left(g_{2}^{1}\right)_{\alpha \mid 2}+\left(g_{2}^{1}\right)_{\gamma} \\
& \left(g_{2}^{1}\right)_{\alpha}=\left(g_{2}^{1}\right)_{\alpha \mid 1}+\left(g_{2}^{1}\right)_{\alpha / 2} \\
& \left(g_{2}^{1}\right)_{\beta}=\left(g_{2}^{1}\right)_{\beta \mid 1} \tag{10}
\end{align*}
$$

with:

$$
\begin{gathered}
{\left[\frac{\partial}{\partial t}+H_{2}^{0}+\varepsilon \frac{\partial}{\partial \varepsilon t}+\varepsilon H_{2}^{1}+\varepsilon \sum_{i=1}^{2} \int_{\left|x_{i, 3}\right|=r: x_{i 3}| |-v_{i 3}}^{\left.d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| g_{1}^{0}(3)\right]\left(g_{2}^{i}\right)_{\alpha \mid 2}}\right.} \\
-\theta_{r}\left(g_{1}^{0} g_{1}^{1}+g_{1}^{1} g_{1}^{0}\right)=[R(2,0)-A(2,0)-B(2,0)]
\end{gathered}
$$

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+H_{2}^{0}+\varepsilon \frac{\partial}{\partial \varepsilon t}+\varepsilon H_{2}^{1}+\varepsilon \sum_{i=1}^{2} \int \underset{\left|x_{i, 3}\right|=r_{0}, x_{i j} \|-v_{i ?}}{\left.d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| g_{1}^{0}(3)\right] \quad\left(g_{2}^{1}\right)_{\alpha \mid i 1}, ~}\right.} \\
& =B(2,0) \tag{12}
\end{align*}
$$

The term $[R(2,0)-A(2,0)-B(2,0)]$ falls off with increasing $\left|x_{12}\right|$ more rapidly than $\mid x_{12} F^{-2}$. Consequently $\left(g_{2}^{1}\right)_{\alpha} \mid 2$ does not contribute to secular behavior in $\left(g_{2}^{2}\right)$. The term $B(2,0)$ varies with increasing $\left|x_{12}\right|$ as $\left|x_{12}\right|^{-2}$. Consequently the right hand side of (13) is of the order $\left|x_{12}\right|^{-1}$ and the right hand side of (14) is of order $\varepsilon \ln \left(\varepsilon\left|x_{12}\right|\right)$ for $\left|\mathrm{x}_{12}\right| \lesssim \varepsilon^{-1}$, from which $\left(\mathrm{g}_{2}^{1}\right)_{\gamma}$ is of order $\varepsilon$ for $\left|\mathrm{x}_{12}\right| \lesssim \varepsilon^{-1}$.

For $\varepsilon x \gg 1$ one has that both $\left(g_{2}^{1}\right)_{\beta / 1}$ and $\left(g_{2}^{1}\right)_{\gamma}$ are of the form

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial t}+H_{2}^{0}+\varepsilon \frac{\partial}{\partial \varepsilon t}+\varepsilon H_{2}^{1}+\varepsilon \sum_{i=1}^{2} \int \underset{\left|x_{i, 3}\right|=x_{6}, x_{i 3}| |-v_{i 3}}{d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| g_{1}^{0}(3)}\right] \quad\left(g_{2}^{1}\right)_{\beta \mid 1}} \\
& =\varepsilon \sum_{i=1}^{2} \iint_{\left|x_{i 3}\right|=r_{6}, x_{i 3} d \mid v_{i 3}}^{d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| e^{-H_{3}^{0} \tau}\left(g_{1}^{0}(3)\left(g_{2}^{H}\right)_{\alpha \mid 1}+\left(g_{2}^{1}\right)_{\alpha \mid 1} g_{1}^{0}(i)\right)}
\end{aligned}
$$

$$
\begin{align*}
& {\left[\frac{\partial}{\partial t}+H_{2}^{0}+\varepsilon \frac{\partial}{\partial \varepsilon t}+\varepsilon H_{2}^{1}+\varepsilon \sum_{i=1}^{2} \int_{\left|\mathbf{x}_{i, 3}\right|=\mathbf{r}_{\dot{\phi}}, \mathbf{x}_{i 3}| |-v_{i 3}}^{\left.d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| g_{1}^{0}(3)\right] \quad\left(g_{2}^{1}\right)_{\gamma},}\right.} \\
& =\varepsilon \sum_{i=1}^{2} \int \begin{array}{c}
d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| e^{-H_{3}^{0} \tau} g_{1}^{0}(3)\left(g_{2}^{1}\right)_{\mid I} \\
\left|x_{i 3}\right|=x_{0}, x_{i 3} \| v_{i 3}
\end{array} \tag{14}
\end{align*}
$$

$\varepsilon e^{-\alpha \varepsilon x}$ with $\alpha$ positive, of order unity, and bounded from below.
Determination of $g_{s}^{2}$ and $g_{2}^{2}$ in particular We now turn to the determination of $g_{s}^{2}$. The right hand side of ( $1^{\prime \prime}$ ) for $m=3$ can be written, analogously to (6) and (7):

$$
\left[H_{s}^{0} \sum_{i=1}^{s} \int_{\left|x_{i ; s+1}\right|<r_{0}} e^{-H_{s+1}^{0}}-\sum_{i=1}^{s} \int_{\mid x_{i, s+1}} e^{-H_{s+1}^{0}}{ }^{H_{s+1}^{0}}\right.
$$

$$
\left.+\sum_{i=1}^{s} \int_{\left|x_{i, s+1}\right|<r_{0}}\left(v_{s+1}-v_{i}\right) \cdot \frac{\partial}{\partial x_{s+1}} e^{-H_{s+1}^{0}}+\sum_{i=1}^{s} \int_{\mid x_{i, s+1}}{\mid<r_{0}}_{\delta}{ }^{11} e^{-H_{s+1}^{0}}\right]
$$

$$
\begin{equation*}
\times\left(I_{3}(i, s+1,1, \ldots, s, t)+e^{H_{s+1}^{0}} \delta_{30}\right) d \Omega_{s+1} \tag{15}
\end{equation*}
$$

with

$$
\begin{gather*}
I_{3}(i, s+1 ; 1, \ldots, s, t) \equiv\left[\sum_{n=0}^{2} \sum_{\alpha=1}^{s} g_{\alpha}^{n}(i, \ldots) g_{s+1-\alpha}^{2-n}(s+1, \ldots)\right. \\
 \tag{16}\\
\left.+g_{s+1}^{2}(t-\tau)\right]
\end{gather*}
$$

One may first calculate the various $g_{s}^{2}(t-\tau)$ without the contributions $\Delta^{\prime}(s, 3)$ and then determine the resulting corrections from the $\Delta^{\prime}(s, 3)$. For $s=3$, at least as concerns $g_{3}^{2}$ which contributes directly to $g_{2}$ for $\left|x_{12}\right|<r_{0}$, the term in $\quad v_{3 i} \cdot \frac{\partial}{\partial x_{3}} \quad e^{-H_{3}^{0} \tau} g_{3}^{2}(t-\tau)$ does not contribute to $g_{2}$ in order $\varepsilon^{2}$ or lower. We assume that the iteration with $\Delta^{\prime}(s ; 3)$ does not decrease the order of $g_{3}^{2}$, and we take the
size of this term as representative of the size of other terms involving $g_{3}^{2}(t-\tau)$ within (15). Also we take the contribution from $s=3$ to be a bound on the contributions from $s \geqslant 4$, so that these too can be neglected in finding $g_{2}$ to order $\varepsilon^{2}$ for $\left|x_{12}\right|<r_{0}$.

For $\Delta^{\prime}(2,3)$ we note that due to the presence of $\left(g_{2}^{1}\right)_{\gamma}$ one expects that one may write

$$
g_{2}^{2}=g_{2 \mid 1}^{2}+g_{2 \mid 2}^{2}
$$

with $g_{2 \mid 1}^{2}$ of order unity on a length scale of order the mean free path and a time scale of order the mean free time. Correspondingly we have

$$
\Delta^{\prime}(2,3)=\sum_{i=1}^{2} \int_{\left|x_{i, 3}\right|<r_{6}}{\mathrm{~d} \Omega_{3}} v_{3 i} \cdot \frac{\partial}{\partial x_{3}} e^{-H_{2}^{0}(i, 3) \tau}\left(g_{1}^{0}(i) g_{2 \mid 1}^{2}+g_{1}^{0}(3) g_{2 \mid 1}^{2}\right)
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial t} g_{2 \mid 1}^{2}+H_{2}^{0} g_{2 \mid 1}^{2}+\varepsilon \frac{\partial}{\partial \varepsilon t} g_{2 \mid 1}^{2}+\varepsilon H_{2}^{1} g_{2 \mid 1}^{2}-\theta_{12}\left(g_{1 \mid 0}^{2}(1) g_{1}^{0}+g_{1 \mid 1}(2) g_{1}\right) \\
& -\varepsilon \sum_{i=1}^{2} \int_{\left|x_{i, 3}\right|<r_{b}}^{d \Omega_{3 i}} v_{3 i} \cdot \frac{\partial}{\partial x_{3}} e^{-H_{2}^{0}(i, 3) \tau}\left(g_{1}^{0}(i) g_{2 \mid 1}^{2}+g_{1}^{0}(3) g_{2 \mid 1}^{2}\right) \\
& =\sum_{i=1}^{2} \int \sum_{\left|x_{i 3}\right|=r_{b}, x_{i 3}| | v_{i 3}}^{d_{3} v_{3} d \sigma_{3}\left|v_{3, i}\right| e^{-H_{3}^{0} \tau}\left(g_{1}^{0}(3)\left(g_{2}^{1}(i, \ldots, t)\right)\right)_{\gamma}}
\end{aligned}
$$

$$
\begin{align*}
& \left|v_{3, i}\right| e^{-H_{3}^{0} \tau} g_{1}^{j}(i)\left(g_{2}^{1}(3, \ldots, t)\right)_{\gamma} \tag{17}
\end{align*}
$$

For $g_{2 / 2}^{2}$ we note that the equation is of the form:

$$
\begin{align*}
\left\{\frac{\partial}{\partial t}+H_{2}^{0}+\varepsilon\right. & \left.\frac{\partial}{\partial \varepsilon t}+\varepsilon H_{2}^{1}+\varepsilon \sum_{i=1}^{2} \int_{\left|x_{i, 3}\right|=r_{o}, x_{i 3}| |-v_{i 3}} \mathrm{~d}_{3} v_{3} \mathrm{~d}_{3}\left|v_{3, i}\right| g_{1}^{0}(3)\right\} g_{2 \mid 2}^{2} \\
& -\theta_{12}\left(g_{1 \mid 2}^{2}(1) g_{1}^{0}+g_{1 \mid 2}^{2}(2) g_{1}^{0}+g_{1}^{1} g_{1}^{1}\right)=S(1,2, t, \varepsilon t) \tag{18}
\end{align*}
$$

$S$ decreases sufficiently rapidly with increasing $\left|x_{12}\right|$ that to order unity the solution for $g_{2}^{2} / 2$, subject to a knowledge of $g_{1}^{1}$ and $g_{1}^{2} \mid 2$, is obtained without iteration.

Discussion of Eq. (17) and comments on the general structure
Equation (17) treats the many body effects whose existence has been previously noted by other authors ${ }^{4,5,6,7}$. The behavior in Eq. (17) is not entirely unexpected since the bineary correlation function as distances of order the mean free path in general is of order $\varepsilon^{2}$ 。 One expects that parts of the binary correlation function in order higher than $\varepsilon^{2}$ will have equations whose homogeneous parts are similar in form to the left hand side of (17). Since the correlation function for $n$ bodies at distances of order the mean free path from each other is in general of order $\varepsilon^{2(n-1)}$ and higher, part of the $n$ body correlation function will satisfy an integrodifferential equation whose homogeneous terms are acted on by the operator

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}+H_{n}^{0}+\right. & \varepsilon \frac{\partial}{\partial \varepsilon t}+\varepsilon H_{n}^{1}-\varepsilon \sum_{i=1}^{n} \int_{\left|x_{i, n+1}\right|<r_{0}} d \Omega_{n+1} v_{n+1, i} \cdot \frac{\partial}{\partial x_{n+1}} e^{-H_{n}^{0}(i, n+1) \tau} \\
& \left.\times(1+\varepsilon(i, n+1)) g_{1}^{0}(n+1)\right)
\end{aligned}
$$

with $\varepsilon(i, n+1)$ exchanging the labels $i$ and $n+1$ 。
Form of single particle distribution function
The single particle distribution function $g_{1}$ is of the form.

$$
g_{1}=g_{1}^{0}+\varepsilon g_{10}^{1}+\varepsilon^{2} \ln \varepsilon g_{11}^{1}+\varepsilon^{2} g_{1}^{2}
$$

with $g_{1}^{0}, g_{10}^{1}, g_{11}^{1}$ and $g_{1}^{2}$ of order unity. Its behavior for all times is given by the equations:

$$
\begin{align*}
& \frac{\partial g_{1}^{0}}{\partial t}=0  \tag{19}\\
& \frac{\partial g_{1}^{0}}{\partial g t}=\lim _{t \rightarrow \infty} \int \theta_{12} g_{2}^{0} d \Omega_{2}  \tag{20}\\
& \frac{\partial g_{10}^{1}}{\partial t}=\underset{t \rightarrow \infty}{\left(1-1 m^{\prime}\right)} \int \theta_{12} g_{2}^{0} \cdot d \Omega_{2}  \tag{21}\\
& \frac{\partial g_{10}^{1}}{\partial \varepsilon t}=\lim _{\mathrm{t} \rightarrow \infty} \int_{12}\left(1-\mathrm{P}_{1}-\mathrm{P}_{2}\right)\left(\mathrm{g}_{2}^{1}\right)_{\alpha} \mathrm{d} \Omega_{2}  \tag{22}\\
& \frac{\partial \mathrm{~g}_{11}^{1}}{\partial \mathrm{t}}=\underset{\mathrm{t} \rightarrow \infty}{\left(1-1 \mathrm{lim}_{0}\right)} \int \theta_{12} \mathrm{P}_{3}\left(\mathrm{~g}_{2}^{1}\right)_{\alpha} \mathrm{S}(1 / 0-\mathrm{t}) \mathrm{d} \Omega_{2}  \tag{23}\\
& \frac{\partial g_{11}^{1}}{\partial \varepsilon t}=\lim _{t \rightarrow \infty} \int \theta_{12}\left(\mathrm{P}_{1}\left(\mathrm{~g}_{2}^{1}\right)_{\alpha}+\left(1-\mathrm{P}_{4}\right)\left(\mathrm{g}_{2}^{1}\right)_{\beta}\right) \mathrm{d} \Omega_{2}  \tag{24}\\
& \frac{\partial g_{1}^{2}}{\partial t}+\varepsilon \frac{\partial g_{1}^{2}}{\partial s t}=\underset{t \rightarrow \infty}{(1-1 i m)} \int \theta_{12}\left(1-\mathrm{P}_{1}-\mathrm{P}_{2}-\mathrm{P}_{3}\right)\left(\mathrm{g}_{2}^{1}\right)_{\alpha} \mathrm{d} \Omega_{2} \\
& +\underset{t \rightarrow \infty}{\left(1-1 m^{m}\right)} \int \theta_{12} \mathrm{P}_{3}\left(\mathrm{~g}_{2}^{1}\right)_{\alpha} \mathrm{S}(\mathrm{t}-1 / \varepsilon) \mathrm{d} \Omega_{2} \\
& +\underset{\mathrm{t} \rightarrow \infty}{(1-1 \mathrm{~m})} \int \theta_{12}\left(\mathrm{P}_{1}\left(\mathrm{~g}_{2}^{1}\right)_{\alpha}+\left(1-\mathrm{P}_{4}\right)\left(\mathrm{g}_{2}^{1}\right)_{\beta}\right) \mathrm{d} \Omega_{2} \\
& +\int \theta_{12}\left(\mathrm{P}_{2}\left(\mathrm{~g}_{2}^{1}\right)_{\alpha}+\mathrm{P}_{4}\left(\mathrm{~g}_{2}^{1}\right)_{\beta}+\left(\mathrm{g}_{2}^{1}\right)_{\gamma}+\left(\mathrm{g}_{2}^{1}\right)+\varepsilon g_{2}^{2}\right) \mathrm{d} \Omega_{2} \tag{25}
\end{align*}
$$

Here

$$
\begin{aligned}
& S(x)=1, x>0 \\
& S(x)=0, x<0
\end{aligned}
$$

and the operators, $P_{i}$ denote the existence of contributions from the functions following them.

Equation (20) is the Boltzmann equation. Equations (22) and (24) are linearized spatially homogeneous Boltzmann equations, with known source terms. From Eq. (25) the behavior due to $\mathrm{g}_{2}^{2} \mid \mathrm{l}$ is given by

$$
\begin{gather*}
\frac{\partial g_{1 \mid 1}^{2}}{\partial t}=0  \tag{26}\\
\frac{\partial g_{1 \mid 1}^{2}}{\partial \varepsilon t}=\int_{\left|x_{12}\right|=r_{o}} v_{21} \cdot d \sigma_{2}{d v_{2}} e^{-\mathrm{H}_{2}^{0}{ }^{\tau}}\left(g_{1 \mid 1}^{2}(1) g_{1}^{0}(2)+g_{1 \mid 1}^{2}(2) g_{1}^{0}(1)\right. \\
\left.+g_{1 \mid 1}^{2}(2) g_{1}^{0}(1)+g_{2 \mid 1}^{2}\right) \tag{27}
\end{gather*}
$$

Within (27), the term in $g_{2 \mid 1}^{2}$ is independent of $g_{1 \mid 1}^{2}$. The form of (27) follows from the fact that the inhomogeneous integral terms in (17) are of order $\varepsilon$ 。
Description of the asymptotic time behavior of $g_{1}$ to order $\varepsilon^{2}$
If the deviation of $g_{1}^{0}$ from its asymptotic value in time approaches zero exponentially or more rapidly, then $g_{10}^{1}, g_{11}^{1}$ and $g_{1}^{2}-g_{1 \mid 1}^{2}$ approach their asymptotic values exponentially. However, a normal mode ${ }^{8,9}$ analysis of (17) and (27) reveals that $g_{1 \mid 1}^{2}$ may in principle approach its asymptotic value algebraically as $t^{-3 / 2}$ for $t \gg 1$ 。

If the deviation of $g_{1}^{0}$ from its asymptotic value approaches zero less rapidly than exponentially, then in general one cannot even conclude that $g_{10}^{1}$ and $g_{1}^{2}$ approach limits.

However, provided $\mathrm{g}_{10}^{1}, \mathrm{~g}_{11}^{1}$ and $\mathrm{g}_{1 \mid 1}^{2}$ remain bounded one can, after a sufficiently long time, linearize (20) in the deviations of $g_{1}^{0}$ from its asymptotic Maxwellian velocity form. Then, for cut-off. Maxwe11ian or "harder" cut-off potentials, ${ }^{10}$ it appears that the deviation of $g_{1}^{0}$ from its asymptotic value decays exponentially in time and the corresponding conclusions as to $\mathrm{g}_{10}^{1}, \mathrm{~g}_{11}^{1}, \mathrm{~g}_{1}^{2}-\mathrm{g}_{1 \mid 1}^{2}$ and $\mathrm{g}_{1 \mid 1}^{2}$ follow. Finally for the potentials just mentioned, if $g_{1}^{0}$ has a constant small deviation from the Maxwellian velocity distribution and one linearizes in this small deviation, the contribution from those modes which yield previous $t^{-3 / 2}$ contribution is finite.

Acknow1edgment
This work was supported by the National Aeronautics and Space Administration under Grant NsG 220-62 and the Air Force Office of Scientific Research of the Office of Aerospace Research under Contract AF 49 (638)-1555.

## References

1. See J. E. McCune, G. Sandri, and E. A. Frieman, Third Symposium on Rarefied Gas Dynamics (Academic Press, No Y. 1963) Vol. $I$, pp. 102-114, for further discussion in terms of the notion of temperature.
2. E. A. Frieman, Journal of Math. Phys. 4, 410 (1963).
3. E. A. Frieman and R. Goldman (to be published in Journal of Math. Phys.)
4. H. Grad - Handbook of Physics - Vol. XII, 205 (1958), Springer

Verlag - Berlin.
5. J. R. Dorfman and E. G. D. Cohen, Phys. Letters 16, 124 (1965).
6. K. Kawasaki and I. Oppenheim, Phys. Rev. 139A, 1763 (1965).
7. J. Weinstock, Phys. Rev. 140A, 460 (1965).
8. L. Sirbvich, Phys. Fluids 6, 10 (1963).
9. L. Sirovich, Phys. Fluids 6, 218 (1963).
10. H. Grad, Physics of Fluids 6, 147 (1963).

