1,154 research outputs found
Transient localization in crystalline organic semiconductors
A relation derived from the Kubo formula shows that optical conductivity
measurements below the gap frequency in doped semiconductors can be used to
probe directly the time-dependent quantum dynamics of charge carriers. This
allows to extract fundamental quantities such as the elastic and inelastic
scattering rates, as well as the localization length in disordered systems.
When applied to crystalline organic semiconductors, an incipient electron
localization caused by large dynamical lattice disorder is unveiled, implying a
breakdown of semiclassical transport.Comment: Revised version, to appear in Phys. Rev. B Rapid Communication
2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/
Analytical evaluation of atomic form factors: application to Rayleigh scattering
Atomic form factors are widely used for the characterization of targets and
specimens, from crystallography to biology. By using recent mathematical
results, here we derive an analytical expression for the atomic form factor
within the independent particle model constructed from nonrelativistic screened
hydrogenic wavefunctions. The range of validity of this analytical expression
is checked by comparing the analytically obtained form factors with the ones
obtained within the Hartee-Fock method. As an example, we apply our analytical
expression for the atomic form factor to evaluate the differential cross
section for Rayleigh scattering off neutral atoms.Comment: 7 pages, 1 figur
Enhancement of Wigner crystallization in quasi low-dimensional solids
The crystallization of electrons in quasi low-dimensional solids is studied
in a model which retains the full three-dimensional nature of the Coulomb
interactions. We show that restricting the electron motion to layers (or
chains) gives rise to a rich sequence of structural transitions upon varying
the particle density. In addition, the concurrence of low-dimensional electron
motion and isotropic Coulomb interactions leads to a sizeable stabilization of
the Wigner crystal, which could be one of the mechanisms at the origin of the
charge ordered phases frequently observed in such compounds
Effect of Holstein phonons on the electronic properties of graphene
We obtain the self-energy of the electronic propagator due to the presence of
Holstein polarons within the first Born approximation. This leads to a
renormalization of the Fermi velocity of one percent. We further compute the
optical conductivity of the system at the Dirac point and at finite doping
within the Kubo-formula. We argue that the effects due to Holstein phonons are
negligible and that the Boltzmann approach which does not include inter-band
transition and can thus not treat optical phonons due to their high energy of
eV, remains valid.Comment: 13 pages, 4 figure
Essential Role of the Cooperative Lattice Distortion in the Charge, Orbital and Spin Ordering in doped Manganites
The role of lattice distortion in the charge, orbital and spin ordering in
half doped manganites has been investigated. For fixed magnetic ordering, we
show that the cooperative lattice distortion stabilize the experimentally
observed ordering even when the strong on-site electronic correlation is taken
into account. Furthermore, without invoking the magnetic interactions, the
cooperative lattice distortion alone may lead to the correct charge and orbital
ordering including the charge stacking effect, and the magnetic ordering can be
the consequence of such a charge and orbital ordering. We propose that the
cooperative nature of the lattice distortion is essential to understand the
complicated charge, orbital and spin ordering observed in doped manganites.Comment: 5 pages,4 figure
Electronic and Magnetic Phase Diagram of a Superconductor, SmFeAsO1-xFx
A crystallographic and magnetic phase diagram of SmFeAsO1-xFx is determined
as a function of x in terms of temperature based on electrical transport and
magnetization, synchrotron powder x-ray diffraction, 57Fe Mossbauer spectra
(MS), and 149Sm nuclear resonant forward scattering (NRFS) measurements. MS
revealed that the magnetic moments of Fe were aligned antiferromagnetically at
~144 K (TN(Fe)). The magnetic moment of Fe (MFe) is estimated to be 0.34
myuB/Fe at 4.2 K for undoped SmFeAsO; MFe is quenched in superconducting
F-doped SmFeAsO. 149Sm NRFS spectra revealed that the magnetic moments of Sm
start to order antiferromagnetically at 5.6 K (undoped) and 4.4 K (TN(Sm)) (x =
0.069). Results clearly indicate that the antiferromagnetic Sm sublattice
coexists with the superconducting phase in SmFeAsO1-xFx below TN(Sm), while
antiferromagnetic Fe sublattice does not coexist with the superconducting
phase.Comment: Accepted in New Journal of Physic
Charge order at the frontier between the molecular and solid states in Ba3NaRu2O9
We show that the valence electrons of Ba3NaRu2O9, which has a quasi-molecular
structure, completely crystallize below 210 K. Using an extended Hubbard model,
we show that the charge ordering instability results from long-range Coulomb
interactions. However, orbital ordering, metal-metal bonding and formation of a
partial spin gap enforce the magnitude of the charge separation. The striped
charge order and frustrated hcp lattice of Ru2O9 dimers lead to competition
with a quasi-degenerate charge-melted phase under photo-excitation at low
temperature. Our results establish a broad class of simple metal oxides as
models for emergent phenomena at the border between the molecular and solid
states.Comment: Minor changes, with supporting information. To appear in Phys. Rev.
Let
Ferromagnetic Polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
Unrestricted Hartree-Fock calculations on La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
in the full magnetic unit cell show that the magnetic ground states of these
compounds consist of 'ferromagnetic molecules' or polarons ordered in
herring-bone patterns. Each polaron consists of either three or five Mn ions
separated by O- ions with a magnetic moment opposed to those of the Mn ions.
Ferromagnetic coupling within the polarons is strong while coupling between
them is relatively weak. Magnetic moments on the Mn ions range between 3.8 and
3.9 Bohr magnetons in La0.5Ca0.5MnO3 and moments on the O- ions are -0.7 Bohr
magnetons. Each polaron has a net magnetic moment of 7.0 Bohr magnetons, in
good agreement with recently reported magnetisation measurements from electron
microscopy. The polaronic nature of the electronic structure reported here is
obviously related to the Zener polaron model recently proposed for
Pr0.6Ca0.4MnO3 on the basis of neutron scattering data.Comment: 4 pages 5 figure
- …
