294 research outputs found

    Strange mass dependence of the tricritical point in the U(3)_L x U(3)_R chiral sigma model

    Get PDF
    We study the strange quark mass dependence of the tricritical point of the U(3)_L x U(3)_R linear sigma model in the chiral limit. Assuming that the tricritical point is at a large strange mass value, the strange sector as well as the \eta-a_0 sector decouples from the light degrees of freedom which determines the thermodynamics. By tracing this decoupling we arrive from the original U(3)_L x U(3)_R symmetric model, going through the U(2)_L x U(2)_R symmetric one, at the SU(2)_L x SU(2)_R linear sigma model. One-loop level beta functions for the running of the parameters in each of these models and tree-level matching of the coupling of these models performed at intermediate scales are used to determine the influence of the heavy sector on the parameters of the SU(2)_L x SU(2)_R linear sigma model. By investigating the thermodynamics of this latter model we identified the tricritical surface of the U(3)_L x U(3)_R linear sigma model in the chiral limit. To apply the results for QCD we used different scenarios for the m_s and \mu_q dependence of the effective model parameters, then the \mu_q^TCP(m_s) function can be determined. Depending on the details, a curve bending upwards or downwards near \mu_q=0 can be obtained, while with explicit chemical potential dependence of the parameters the direction of the curve can change with m_s, too.Comment: 17 pages, 6 figures, uses revtex4-

    A simple ansatz to describe thermodynamic quantities of peptides and proteins at low temperatures

    Full text link
    We describe a simple ansatz to approximate the low temperature behavior of proteins and peptides by a mean-field-like model which is analytically solvable. For a small peptide some thermodynamic quantities are calculated and compared with numerical results of an all-atoms simulation. Our approach can be used to determine the weights for a multicanonical simulation of the molecule under consideration.Comment: 11 pages, Latex, 4 Postscript figures, to appear in Int. J. Mod. Phys. C (1997

    How the PHMC algorithm samples configuration space

    Get PDF
    We show that in practical simulations of lattice QCD with two dynamical light fermion species the PHMC algorithm samples configuration space differently from the commonly used HMC algorithm.Comment: 3 pages, 2 figures, LATTICE98 (Algorithms

    Remarks on the Gribov Problem in Direct Maximal Center Gauge

    Get PDF
    We review the equivalence of maximal center gauge fixing to the problem of finding the best fit, to a given lattice gauge field, by a thin vortex configuration. This fit is necessarily worst at the location of P-plaquettes. We then compare the fits achieved in Gribov copies generated by (i) over-relaxation; (ii) over-relaxation after Landau gauge preconditioning; and (iii) simulated annealing. Simulated annealing yields the best fit if all links on the lattice are included, but the situation changes if we consider only the lattice volume exterior to P-plaquettes. In this exterior region, the fit is best for Gribov copies generated by over-relaxation, and worst for Gribov copies generated after Landau gauge preconditioning. The two fitting criteria (including or not including the P-plaquettes) yield string tensions differing by -34% to +20% respectively, relative to the full string tension. Our usual procedure (``quenched minimization'') seems to be a compromise between these criteria, and yields string tensions at an intermediate value close to the full string tension.Comment: 14 pages, 6 figure

    't Hooft Loops, Electric Flux Sectors and Confinement in SU(2) Yang-Mills Theory

    Get PDF
    We use 't Hooft loops of maximal size on finite lattices to calculate the free energy in the sectors of SU(2) Yang-Mills theory with fixed electric flux as a function of temperature and (spatial) volume. Our results provide evidence for the mass gap. The confinement of electric fluxes in the low temperature phase and their condensation in the high temperature phase are demonstrated. In a surprisingly large scaling window around criticality, the transition is quantitatively well described by universal exponents and amplitude ratios relating the properties of the two phases.Comment: 5 Pages, LaTeX 2.09 (uses revtex v3.1), 5 Figures (epsfig), revised version to appear in Phys. Rev.

    Ordering monomial factors of polynomials in the product representation

    Get PDF
    The numerical construction of polynomials in the product representation (as used for instance in variants of the multiboson technique) can become problematic if rounding errors induce an imprecise or even unstable evaluation of the polynomial. We give criteria to quantify the effects of these rounding errors on the computation of polynomials approximating the function 1/s1/s. We consider polynomials both in a real variable ss and in a Hermitian matrix. By investigating several ordering schemes for the monomials of these polynomials, we finally demonstrate that there exist orderings of the monomials that keep rounding errors at a tolerable level.Comment: Latex2e file, 7 figures, 32 page

    A Study of Meson Correlators at Finite Temperature

    Get PDF
    We present results for mesonic propagators in temporal and spatial directions at T below and above the deconfining transition in quenched QCD. Anisotropic lattices are used to get enough information in the temporal direction. We use the Wilson fermion action for light quarks and Fermilab action for heavy quarks.Comment: LATTICE 99 (finite temperature and density), 3 pages, LaTeX with 3 eps figures, espcrc2.sty, psfig.st

    Testing Algorithms for Finite Temperature Lattice QCD

    Get PDF
    We discuss recent algorithmic improvements in simulating finite temperature QCD on a lattice. In particular, the Rational Hybrid Monte Carlo(RHMC) algorithm is employed to generate lattice configurations for 2+1 flavor QCD. Unlike the Hybrid R Algorithm, RHMC is reversible, admitting a Metropolis accept/reject step that eliminates the O(δt2)\mathcal{O}(\delta t^2) errors inherent in the R Algorithm. We also employ several algorithmic speed-ups, including multiple time scales, the use of a more efficient numerical integrator, and Hasenbusch pre-conditioning of the fermion force.Comment: 4 pages, 2 figures, poster presented at International Conference on Strong and Electroweak Matter 2006 (SEWM2006), BNL, May 10-13, 200

    Nuclear Physics from lattice QCD at strong coupling

    Full text link
    We study numerically the strong coupling limit of lattice QCD with one flavor of massless staggered quarks. We determine the complete phase diagram as a function of temperature and chemical potential, including a tricritical point. We clarify the nature of the low temperature dense phase, which is strongly bound nuclear matter. This strong binding is explained by the nuclear potential, which we measure. Finally, we determine, from this first-principle limiting case of QCD, the masses of atomic nuclei up to A=12 "carbon".Comment: 4 pages, 5 figures; v2: references added, minor changes, published versio

    Fermion loop simulation of the lattice Gross-Neveu model

    Full text link
    We present a numerical simulation of the Gross-Neveu model on the lattice using a new representation in terms of fermion loops. In the loop representation all signs due to Pauli statistics are eliminated completely and the partition function is a sum over closed loops with only positive weights. We demonstrate that the new formulation allows to simulate volumes which are two orders of magnitude larger than those accessible with standard methods
    • …
    corecore