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Strange mass dependence of the tricritical point
in the U(3)L ×U(3)R chiral sigma model
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We study the strange quark mass dependence of the tricritical point of the U(3)L ×U(3)R linear
sigma model in the chiral limit. Assuming that the tricritical point is at a large strange mass value,
the strange sector as well as the η − a0 sector decouples from the light degrees of freedom which
determines the thermodynamics. By tracing this decoupling we arrive from the original U(3)L ×

U(3)R symmetric model, going through the U(2)L×U(2)R symmetric one, at the SU(2)L×SU(2)R
linear sigma model. One-loop level beta functions for the running of the parameters in each of these
models and tree-level matching of the coupling of these models performed at intermediate scales are
used to determine the influence of the heavy sector on the parameters of the SU(2)L×SU(2)R linear
sigma model. By investigating the thermodynamics of this latter model we identified the tricritical
surface of the U(3)L × U(3)R linear sigma model in the chiral limit. To apply the results for QCD
we used different scenarios for the ms and µq dependence of the effective model parameters, then
the µTCP

q (ms) function can be determined. Depending on the details, a curve bending upwards or
downwards near µq = 0 can be obtained, while with explicit chemical potential dependence of the
parameters the direction of the curve can change with ms, too.

I. INTRODUCTION

The phase diagram of QCD is a much-studied phenomenon, but still its characteristics, at finite baryon chemical
potential in particular, are far from being settled [1–3]. While at zero chemical potential all the Monte Carlo (MC)
and effective model studies tend to support a common picture, at nonzero chemical potential the MC results are
inconclusive.
At zero chemical potential the widely accepted phase diagram in the mud-ms plane exhibits both at small and at

large quark masses regions of first order phase transition each bounded by a line of second order critical endpoints
(CEP). In between these regions, the transition is of analytic crossover type. If we introduce a nonzero quark baryon
chemical potential µq, the second order CEP lines extend to a critical surface. If the critical surface lying closer to
the origin of the mass-plane bends upwards, that is to larger quark masses, then there is a possibility that a crossover
transition becomes at larger chemical potential a second, and subsequently a first order phase transition. Direct MC
simulations [4, 5] and also the estimates in [6, 7] give a finite µCEP

q value, and similar conclusions can be drawn
from other lattice techniques, too [8–10]. However, the second order surface seems to bend downwards, to smaller
quark masses, according to a lattice study of the curvature performed in [11–13] using imaginary chemical potential.
Although all these lattice results do not necessarily contradict each other, they could imply a scenario in which the
critical surface has a non-trivial shape. Some numerical evidence for such a possibility is given in [14].
Beyond direct simulations one can approach the study of the phase structure of QCD through effective theories,

see e.g. [3, 15] for reviews. At finite chemical potential there are several results on the chiral phase transition for two
flavors in Nambu–Jona-Lasinio (NJL) models, as well as in linear sigma models [16–19]. Using the SU(2)L×SU(2)R
linear sigma model an interesting phase structure with two CEPs in the µq − T plane was reported for low values of
the pion mass in [19]. Considering three flavors, one can study in these models the properties of the chiral critical
surface [20–25]. In [20–22] the authors used the U(3)L×U(3)R chiral sigma model near the physical point, and found
that in the available parameter space the critical surface bends upwards, supporting the direct MC result. In [23–25],
in the framework of the extended NJL model the authors found a down-bending surface for small chemical potential
which eventually turns back at higher values of µq. This behavior would conciliate the two MC scenarios within a
single critical surface if the turning happens at positive values of mud, ms and finite values of µq. Other possible
behaviors of the critical surface were discussed in [26, 27] using the Gibbs’ phase rule for phase coexistence.
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In the chiral limit (mud = 0), there are two well-known limits, the µq = 0 and the infinite strange quark mass
(ms = ∞) limits. At µq = 0 we have a first order phase transition region for smallms, a second order transition region
at large ms and a tricritical point (TCP) separating them, with a characteristic value mTCP

s . At ms = ∞ and small
chemical potential we have second order, for large µq a first order phase transition, with again a TCP in between.
The line of TCPs is the intercept of the critical surface and the ms − µq plane. According to the above scenarios the
two TCPs at the µq = 0 and ms = ∞ can be connected by a single line with definite curvature, a back-bending line,
or they may belong to two distinct TCP lines. In the latter case there must be two disjunct critical surfaces in the
mud −ms − µq space, of which these two TCP lines are just the endpoints in the ms − µq plane [26, 27].
In this paper we attempt to describe the behavior of the tricritical line in the chiral limit of the U(3)L × U(3)R

sigma model [20, 28, 29], assuming in addition that the mass of the constituent strange quark and the anomaly scale
are much larger than the critical temperature. The study of the chiral limit has some advantages, since one can work
with much less parameters than in a generic situation. A disadvantage though, is that in this case there are no direct
measurements which could connect the effective model parameters with the QCD (although, strictly speaking, there
are no such measurements anywhere, apart from the physical point, especially not for a possible chemical potential
dependence of the parameters). The goal of this study is to explore the parameter dependence of the TCP line.
The assumption that the constituent strange mass is much larger than Tc is based on the observation that even at

the physical point of the mass plane the constituent strange quark mass is ∼ 450 MeV, while Tc ∼ 160 MeV, and the

critical line in the mud −ms plane behaves as mTCP
s −ms ∼ m

2/5
ud , as one approaches the ms axis, which predicts for

mTCP
s and for the mass of the strange constituent quark a higher value than the corresponding mass at the physical

point. Actually, in the lattice study of [30] it was estimated that mTCP
s ≃ 2.8Tc, while in [29] using the U(3)L×U(3)R

sigma model mTCP
s was estimated to be one order of magnitude bigger than the value of ms at the physical point.

A similar observation can be made for the anomaly scale, which is connected to the mass of the η′ meson. In this
physical situation we have a multi-scale system, where a simple one-loop analysis would lose the contribution of the
heavy sector. Instead, we have to work with decoupling theory [31] which results in a hierarchy of effective models
describing the physics at lower and lower scales: first the ms strange quark sector decouples with the corresponding
bosonic degrees of freedom, and we obtain an effective U(2)L × U(2)R symmetric theory. Then the η′ sector (which
has semi-large masses at ms → ∞ because of the anomaly) decouples, and we are left with the SU(2)L × SU(2)R
chiral sigma model consisting of pion and sigma mesons, as well as the u and d constituent quarks. Here we can use
the results of [18] to determine the position of TCP for a given parameters set. The effect of the strange sector on
the position of the TCP is only through the modified parameters of the SU(2)L × SU(2)R chiral sigma model. To
determine the parameters of the different effective models involved in the analysis we use the one-loop β-function
governed running of these parameters and matching of the corresponding n-point functions in the common validity
range of the models. Some extra assumptions on the original parameters of the U(3)L × U(3)R sigma model are
unavoidable.
The setup of the paper is as follows. First, we discuss the model in Sec. II. Then, we overview the generic ideas

how the decoupling works in Sec. III. Next, we perform the decoupling in the U(3)L × U(3)R model in Sec. IV. We
study the thermodynamics in the resulting effective SU(2)L × SU(2)R linear sigma model in Sec. V. We close with
conclusions in Sec. VI.

II. THE MODEL

We first construct the starting model [20, 28], which is the U(3)L × U(3)R symmetric linear sigma model defined
by the Lagrangian:

LU(3) = ψ̄
[

i∂/ − 2gT a(σa + iγ5πa)
]

ψ +Tr(∂µΦ
†∂µΦ)− U(Φ), (1)

where T a are the U(3) generators, Ta = λa/2 for a = 1, . . . 7 and T 0 ≡ T x, T 8 ≡ T y [29], with

T x =
1

2





1 0 0
0 1 0
0 0 0



 T y =
1√
2





0 0 0
0 0 0
0 0 1



 . (2)

The meson matrix Φ = σ + iπ = T a(σa + iπa) is given in terms of the physical degrees of freedom as:

σ =
1√
2





1√
2
(σx + a00) a+0 κ+

a−0
1√
2
(σx − a00) κ0

κ− κ̄0 σy



 , π =
1√
2





1√
2
(ηx + π0) π+ K+

π− 1√
2
(ηx − π0) K0

K− K̄0 ηy



 . (3)
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Finally, the potential for Φ reads

U(Φ) =M2Φ†Φ + λ1
[

Tr(Φ†Φ)
]2

+ λ2 Tr
[

(Φ†Φ)2
]

−
√
2C(detΦ + detΦ†) + Tr

[

H(Φ + Φ†)
]

. (4)

Here, C governs the U(1) anomaly which breaks the symmetry to SU(3)L × SU(3)R. The last H-dependent term
explicitly breaks also this symmetry. As a consequence we assume that vacuum expectation values develop for those
scalar fields belonging to the center elements of the symmetry group. These are taken into account through the shifts:
σx → σx + x and σy → σy + y. In this paper we are interested in the regime where the vacuum structure of the
theory contains a heavy s-quark sector and a light ud sector, with a corresponding meson sector. For the constituent
quark sector this mass hierarchy can be fulfilled with y ≫ x, since at tree-level the s-quark mass is ms =

√
2gy, while

mud = gx. We assume that the mesons containing s-quark have a mass of order ms, while the rest have a mass of
order mud. No splitting is assumed between u and d quark masses.
After having made all these assumptions, the mass spectrum, and correspondingly the physics splits into a heavy

and a light part. The light sector influences only very little the symmetry breaking pattern of the heavy sector,
therefore we may set x = 0 when dealing with the determination of the heavy masses. Then we find the following
mass relations:

m2
x =M2 + λ1y

2 − Cy, m2
a =M2 + λ1y

2 + Cy, m2
K =M2 + (λ1 + λ2)y

2,

m2
y =M2 + 3(λ1 + λ2)y

2, m2
s = 2g2y2, (5)

where m2
x is the mass for πi and σx, m

2
a is the mass of ηx and a0i , m

2
K applies for ηy, K and κ modes, m2

y is the mass
of σy and finally, ms is the strange quark mass. In case of a large strange quark mass, i.e. large y values, the lightness
of the pion-sigma sector requires that m2

x ≪ m2
s. This can be achieved only with fine-tuning m2 – after all this is the

manifestation of the hierarchy problem, where the high energy sector influences, through radiative corrections and
spontaneous symmetry breaking, the light sector. To circumvent the problem, we parametrize everything with the
light x-mass:

m2
a = m2

x + 2Cy, m2
K = m2

x + λ2y
2, m2

y = m2
x + (2λ1 + 3λ2)y

2. (6)

We see that there is a third mass scale, associated to Cy. Since C has the dimension of a mass, we can relate its value
to y or mx, and it is a matter of the low-lying dynamics determining the details of the effective model to know which
is the “true” ratio between them. In this work we try to play around the possible values of C to see its effect on the
thermodynamics.
So, after all, we have three possibly very different mass scales, ms, ma and mx. The thermodynamics of the system,

which is related to the spontaneous breaking in the non-strange sector, must take place at the light scales, that is
at T ∼ mx. To treat a physical system with vastly different mass scales is possible only using the fact that for
the light physics the heavy degrees of freedom decouple, and their presence can be identified through the values of
the parameters of the Lagrangian containing the light degrees of freedom. How this decoupling works in detail, is
summarized in the next section.

III. DECOUPLING OF MASS SCALES

Here we review the generic principles of decoupling described in details in [31]. Let us start with a theory with
Lagrangian L, coupling constant set {gi}i=1...u (this includes also the masses) and field contents generically denoted
with Φ and ϕ. Let us assume that Φ is much heavier than ϕ, their masses are denoted by M and m, respectively1.
Then we want to establish an effective theory based exclusively on the light degrees of freedom. Let us denote the
Lagrangian of this effective theory by L̂, its couplings are {ĝi}i=1...û (û ≤ u) and the field content is ϕ̂ with mass
m̂ ∼ m. We emphasize that, although ϕ̂ corresponds to the light degrees of freedom ϕ of the complete theory, they can
differ by wave function renormalization. In general the wave function renormalization and the renormalized couplings
of the effective theory depend on the coupling constants of the original theory:

ϕ̂ = z1/2(g)ϕ, ĝi = fi(g). (7)

If we assume that the couplings of the effective model at tree level are linear combinations of the original couplings,
then we can write

ĝi =
u
∑

j=1

Gijgj +∆gi(g), i ∈ [i . . . û], (8)

1 For the sake of simplicity we only consider one heavy and one light degree of freedom
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where ∆gi(g) denotes the loop corrections which depend on all of the original couplings.
In order to determine these relations we use matching: we take û+1 correlators of the light fields at some external

momentum, and require that their physical value be the same in the original and in the effective model. If we denote
the n-point functions of the original and effective model by

Gn(x1, . . . xn) = 〈Tϕ(x1) . . . ϕ(xn)〉 , Ĝn(x1, . . . xn) = 〈Tϕ̂(x1) . . . ϕ̂(xn)〉 , (9)

then we require in Fourier space

Ĝn(k1, . . . kn) = zn/2Gn(k1, . . . kn) (10)

for fixed k1, . . . kn. The right hand side contains, as radiative corrections, the effect of heavy modes.
In perturbation theory the n-point functions depend also on the renormalization scales µ and µ̂, respectively. In

general, we expect to obtain all type of logarithmic corrections lna µ/E, where E is any energy scale which shows up
in the given n-point function. In loop integrals we typically find E2 ∼ max(k2i ,mass2), where the mass can be m, M
on the right, or m̂ on the left hand side. In order not to have multiple mass scales in the n-point functions (which
would lead to large logarithms) we shall choose |ki| ∼ M , then all scales are of the order of M . This means that for
the best convergence of the perturbative series we shall also choose µ, µ̂ ∼ M . In consequence the relation (7) is in
fact established at scale M :

ĝi(M) =

u
∑

j=1

Gijgj(M) + ∆gi(g(M)). (11)

In the original theory the couplings may be defined on a different energy scale,M0. Then, we have to run the couplings
according to L in order to find gi(M) which is needed above. On the other hand, (11) defines ĝi on the scale M . If

we need them on a lower energy scale M ′, then we have to run them according to L̂, the effective model Lagrangian.

If there are multiple scales to decouple, we have a series of effective models L(a) with coupling constants {g(a)i }i=1...ua

where the heaviest field has a massM(a). Then the matching conditions described above lead to the series of equations

g
(a+1)
i (M(a)) =

ua
∑

j=1

Gijg(a)i (M(a)) + ∆g
(a)
i (g(M(a))). (12)

This defines the new couplings g
(a+1)
i at the mass scaleM(a) which, from the point of view of the a+1th effective model,

is a high energy scale. Then the running of the couplings between M(a) → M(a+1) is governed by the Lagrangian

L(a+1). This process leads to the schematic running depicted on Fig. 1.

0

g

M M M M3 2 1

FIG. 1. Schematic plot of the running of a coupling constant. The running between M(a) and M(a+1) is governed by L(a+1).

In the most simple version we use tree level matching, which means that we neglect the ∆gi terms. We use this
approximations throughout this work. Moreover, we use the lowest order (one-loop) beta functions for running.
We start with the U(3)L × U(3)R symmetric linear sigma model which is parametrized at the heavy, strange mass

scale in order to avoid the need for running. After the decoupling of the strange sector we are left with a U(2)L×U(2)R
model, starting at ms scale. The beta-functions of this model determines the running of the coupling down to ma,
when we switch to SU(2)L ×SU(2)R model containing only the σ and π mesons and the u and d constituent quarks.
We perform in this model the running of their couplings from ma down to T scale, where the finite temperature study
is performed.
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A separate treatment is needed when we treat the light masses of the system. At one hand, due to the RG running,
they acquire logarithmic dependence on the heavy scale. On the other hand, because of the hierarchy problem
discussed in the previous section, the light mass squared m2 have to be fine tuned by M2 in order to keep the light
sector truely light. Therefore in bosonic models the logarithmic corrections from the RG running are subleading, and
so they should be neglected.

IV. DECOUPLING OF THE HEAVY SECTOR

We use (1) with a background y taken into account via the shift σy → σy + y. The first step is to parametrize
the heavy sector by determining the parameters of the model at scale ms. Then, as a next step, we perform the
decoupling of the heavy (strange) sector.

A. Parametrization of the heavy sector

We should fix the parameters of the heavy sector by measurements, but there exist no direct mass measurements
in this regime. Therefore we are forced to make some assumptions. Since we are in a large quark mass regime, we can
not use the results of the chiral perturbation theory. Instead, the heavy constituent quark model approach, where the
mass of the heavy particles are simply the sum of the constituent quark masses, seems to be more adequate. In case
of the light-heavy mesons this works nicely, since we can require

mK = ms ⇒ λ2 = 2g2. (13)

In the doubly heavy sector there is a mismatch between the scalar (σy) and pseudoscalar (ηy) meson masses, although
the constituent quark model would give the same mass for both. The reason in this model is that there is a symmetry
breaking effect in addition to the constituent quark masses. To treat this situation we introduce a free parameter Ā,
and require that some average of the two mass squared is (2ms)

2:

Ām2
y + (1− Ā)m2

K = (2ms)
2, (14)

which results in a relation between the two quartic coupling constants λ1 and λ2

λ1 =

(

3

2Ā − 1

)

λ2. (15)

If Ā = 1, i.e. when my = 2ms, λ1 = g2 is the smallest value for λ1. Another plausible choice is Ā = 1/2, then
λ1 = 2λ2 = 4g2. Therefore, introducing A = −2 + 3/Ā we may set

λ1 = Ag2, where A ∈ [1,∞]. (16)

The parameter range A ∈ [1, 4] will be used later in the analysis.
For fixing the other parameters we will use the infrared (IR) sector: we will determine mσ at its own scale, this

will give the mass unit in the study. For fixing the ms value at µ = ms scale we also use an IR observable: this will

be that m
(0)
s value where we have a TCP at zero chemical potential (but, of course, at finite temperature). Through

the decoupling equations this value will determine the original, zero temperature strange quark mass.

B. Tree level decoupling

The next step is to eliminate the strange sector, and determine the parameters of the resulting effective model. The
effective model will contain the following degrees of freedom: the upper two (u, d) components in ψ, denoted by ψ2,
and the upper left 2× 2 submatrix in Φ, denoted by Φ2 and containing the σ ≡ σx, a0, ηx, and π fields:

ψ =

(

ψ2

s

)

, Φ =







Φ2
1√
2
K+

1√
2
K

†
−

1√
2
(σy + iηy)






, K± = κ± iK =

(

κ+ ± iK+

κ0 ± iK0

)

. (17)
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We split the Lagrangian (1)-(4) according to this characterization of degrees of freedom. The shifted Lagrangian reads

LU(3) = LU(2) + Lheavy + const. . (18)

Here, Lheavy contains the heavy part, the ‘const.’ term refers to the y-dependent part of the potential, while LU(2)

contains the terms which consist of the light fields:

LU(2) =ψ̄2 [i∂/ − gτi(σ2i + iγ5π2i)]ψ2 +Tr
(

∂µΦ
†
2∂µΦ2

)

− (M2 + λ1y
2)Tr

[

Φ†
2Φ2

]

−λ1
[

Tr(Φ†
2Φ2)

]2 − λ2 Tr
[

(Φ†
2Φ2)

2
]

+ Cy
[

det Φ2 + detΦ†
2

]

. (19)

Tree level matching means that we simply neglect the heavy part, and go on with the Lagrangian described above.
We can argue for this simple choice as follows. The parametrization of the heavy sector of the model could be done
only very heuristically, in which case only the leading order effects could be taken into account. Therefore, it would
be inconsistent to work with a detailed decoupling scheme, determining ∆g ∼ O(g2) or O(g3) corrections to the tree
level values which are not known precisely. For this reason the leading order approach is the most consistent here.
As a result of this approximation we shall trust only the most robust consequences of this study.

C. Running in the U(2)L × U(2)R linear sigma model

In component fields (19) can be written as

LU(2) =ψ̄2

[

i∂/ − g(ϕ5 − iγ5a5)
]

ψ2 +
1

2
(∂µϕ)

2 −
m2
ϕ

2
ϕ2 +

1

2
(∂µa)

2 − m2
a

2
a2

−λ
4
(ϕ2 + a2)2 − λ2

2
(ϕ2a2 − (ϕa)2), (20)

where we introduced the following notations: ϕ5 = σ0 + τiσi, a5 = −π0 − τiπi, with τi being the Pauli matrices,
λ = λ1 + λ2/2, ϕ = (σ, πi), and a = (−η, ai). The squared masses are m2

ϕ/a = m2 ∓ c, where m2 = M2 + λ1y
2 and

c = Cy (cf. (5)).
The running of the couplings are determined by the beta-functions given in Appendix A, under equation (A32).

By solving (A32a) the running of g can be obtained explicitly:

g2(µ) =
g2(µ0)

1− 5g2(µ0)

12π2
ln
µ2

µ2
0

=
12π2

5 ln
Λ̄2
0

µ2

, (21)

where Λ̄2
0 = µ2

0 exp
[

12π2/(5g2(µ0))
]

. This has an UV Landau pole, while it goes to zero when µ→ 0.
For the other two equations, (A32b) and (A32c), we introduce the ratios:

u =
2λ

g2
, u2 =

λ2
g2
, (22)

and a new function X(µ) monotonous in µ which satisfies

1

g2
dX

d lnµ
=

1

4π2
. (23)

Using (21), this equation has the solution

X(µ) =
3

10
ln

[

ln (̄Λ0/µ0)

ln(Λ̄0/µ)

]

, ln
µ0

µ
= ln

Λ̄0

µ0

(

e−
10
3 X − 1

)

= ln
Λ̄0

µ

(

1− e
10
3 X

)

. (24)

Here we have chosen the condition X(µ0) = 0, where µ0 is chosen to be the strange quark mass ms. Then we find:

∂u

∂X
= 4u2 + 3uu2 + 3u2 − 4− 14

3
u,

∂u2
∂X

= 3uu2 + u22 − 4− 14

3
u2. (25)

Conform subsection IVA, the phenomenologically motivated initial conditions are u2 = 2 and u = 2(A+1) = 4 . . . 10,
at the scale of the s-quark. The solution of (25) is depicted in Fig. 2. As this plot also demonstrates, for a wide
range of µ, u2 stays in the interval [1, 2], while u decreases continuously as we lower the scale µ from µ0 = ms down
to µ < ms. Sooner or later (depending the initial conditions) u crosses zero which signals the instability of the theory.
Probably it means that in order to maintain stability higher order corrections are needed.
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FIG. 2. Running of the ratios u = 2λ/g2 and u2 = λ2/g
2 starting from different initial conditions.

D. Running in the SU(2)L × SU(2)R linear sigma model

If we are well below the ma scale, then we can use the model containing the σ − π sector of (20) and the u, d
constituent quarks. This model is the SU(2)L × SU(2)R linear sigma model defined by

LSU(2) = ψ̄2

[

i∂/ − g(σ + iγ5τiπi)
]

ψ2 +
1

2
(∂µϕ)

2 −
m2
ϕ

2
ϕ2 − λ

4
ϕ4, (26)

where ψ2 and m2
ϕ were defined in the previous two subsections. The parameters of the model are defined at scale

ma, so we have to apply renormalization group running to find the values of the coupling at the phase transition
temperature T ∼ mσ.
The RG equation are determined in Appendix B, eq. (B14). The running of g can be solved:

g2(µ) =
g2(µ0)

1 +
5g2(µ0)

24π2
ln
µ2

µ2
0

=
24π2

5 ln
µ2

Λ2
0

, (27)

where Λ2
0 = µ2

0 exp[−24π2/(5g2(µ0))]. This has an IR Landau pole, while it goes to zero when µ→ ∞. The definition
of Λ0 is RG invariant. Comparing (27) with (21), and taking into account that the change of scaling is at µ0 = ma

we find

Λ̄2
0 =

m3
a

Λ0
. (28)

For the running of λ we again introduce again X(µ) defined in (23) where now g is the coupling of the SU(2)L ×
SU(2)R linear sigma model. Using (27) we obtain

X(µ) =
3

5
ln

[

ln(µ/Λ0)

ln(µ0/Λ0)

]

, ln
µ0

µ
= ln

µ0

Λ0

(

1− e
5
3X

)

. (29)

We introduce the same ratio as in (22): 2λ = ug2, and find

du

dX
= 3u2 + u− 4. (30)

The solution of this equation reads

u− 1

3u+ 4
=

u0 − 1

3u0 + 4

(

1− ln(µ0/µ)

ln(µ0/Λ0)

)21/5

. (31)

This equation has a fixed point at u = 1, as it is shown in Fig. 3
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FIG. 3. Running in the SU(2)L × SU(2)R linear sigma model showing the presence of a fix point at u = 1.

In the SU(2)L × SU(2)R linear sigma model we can follow the running of the light mass, using (B14). The same
running is true for the tree-level sigma mass m2

σ ≡ −2m2
ϕ. Then we find

m2
σ(µ) = m2

σ(µ0) exp

[

1

12π2

∫ ln µ

µ0

0

d (ln(µ′/µ0)) g
2(µ′)

(

9

2
u(µ′)− 1

)

]

. (32)

With the help of (27) and (31) we obtain

m2
σ(µ) = m2

σ(µ0) exp

[

7g2(µ0)

24π2

∫ ln µ

µ0

0

ds

1 + bg2(µ0)s

1 + 6Y0z(s)

1− 3Y0z(s)

]

, (33)

where z(s) =

(

1 +
s

ln(µ0/Λ0)

)21/5

, b = 5/(12π2) and Y0 = (u(µ0)− 1)/(3u(µ0) + 4).

V. THERMODYNAMICS OF THE TRICRITICAL POINT

The one-loop study of the tricritical point in the SU(2)L × SU(2)R linear sigma model was done in [18] using an
expansion in the number of flavors. We quote below the equations (12) and (14) of that work which determine the
position of the tricritical point in the µq−T plane. Using the present notation for the couplings these equations read:

m2
ϕ + T 2

[

λ

3
+ g2 +

3g2

π2
α2

]

= 0,

λ+
3g4

π2

[

ln(βµ) −F(α)
]

= 0, (34)

where β = 1/T is the inverse temperature and α = βµq with µq the quark baryon chemical potential. The function
F reads

F(α) = 1− γE + ln 2− ∂

∂s

[

Lis(−eα) + Lis(−e−α)
]

∣

∣

∣

s=0
. (35)

This is a monotonously increasing function of its argument, F(0) = 1.5675.
We choose the scale µ = eξT , where ξ is a number of O(1). Then the logarithm yields ξ, which effectively modifies

F → F̄ = F − ξ. In case of spontaneous symmetry breaking m2
ϕ < 0, and it is useful to rescale all the masses with

the tree level sigma mass m2
σ = −2m2

ϕ at scale µ. Then the equations to solve will be

1

2
= T 2g2(µ)

[

u(µ)

6
+ 1 +

3

π2
α2

]

, u(µ) =
6

π2
g2(µ) F̄(α). (36)



9

 0 10 20 30 40 50 60 70 80

 3 4 5 6 7 8 9 10

 1.5

 2.5

 3.5

 4.5

 5.5

g2

µq/T=0   
µq/T=0.8

ms/mσ

ma/mσ

g2

ms/mσ ma/mσ

 1.5

 2.5

 3.5

 4.5

g2

µq/T=0.8

u=10
u=6 

 0 10 20 30 40 50  0  2  4  6  8  10

g2

FIG. 4. The dependence of αc (µq/T at the TCP) on the parameters for u2(ms) = 2. The left panel is obtained with
u(ms) = 10. The value of Λ0 is fix along the lines of the surfaces directed towards the origin of the ms −ma plane. For further
information see the main text.

In the complete problem therefore there are 5+2 parameters: at the UV scale ms we have ms, ma, g
2, u, u2, and

also we have µ and T at the IR scale. The light mass mϕ or the corresponding mσ is used as a mass unit. At the
TCP α = βµq and T can be determined as functions of the UV parameters:

G0 : ms,ma, g
2, u, u2 7→ αc, Tc. (37)

The final output of the investigation should be, of course αc(ms) and Tc(ms). But as we just have seen, even in
the chiral limit of mud = 0 the problem is five dimensional instead of one dimensional. For a sensible prediction we
have to say something about the strange mass dependence of ma, g

2, u, u2 – these functions should come from the
underlying theory, now QCD. Since we do not have this information, we have to assume something sensible.
In the light of the previous subsections we make some approximations: we can fix u2(ms) = 2 and for u we consider

two cases: u(ms) = 4 and u(ms) = 10. The remaining function

G : ms,ma, g
2 7→ αc, Tc (38)

can be plotted as shown in Fig. 4. The detailed numerical strategy to solve the system and obtain this plot is given in
Appendix C. Fig. 4 shows surfaces in the ms,ma, g

2 parameter space leading to some fixed value of αc. The µq/T = 0
critical surface is a limiting one, in the sense that surfaces with µq/T > 0 all lie on one of its side, they never cross
each other. Moreover the normal vector of the surface pointing to positive µq/T always have negative ms component
– in this sense we can say that going on the direction of the largest µq/T change, the surfaces bend downwards in ms.
In order to show that different values of u do not change qualitatively the result we plot the µq/T = 0.8 surface

obtained using u(ms) = 10 and u(ms) = 6, and rescale the g2 values of the latter by a factor of 1.5. The two surfaces
can be seen on the right panel of Fig. 4. As the plot shows, the surfaces have the same characteristics.

A. Implication of the results for QCD

In real QCD we cannot change ma, ms and g
2 independently. If we knew the ms dependence of ma and g2 then we

would have a curve in the ms −ma − g2 space parametrized by ms. This line would go through the critical surfaces
characterized by fix µq/T , and then we could determine the ms(µq/T ) function. Since we do not have any information
on the ms dependence of the parameters we explore several possibilities by fixing the value of one of the parameters.
For a constant value of g2 the ms-dependence of the critical µq/T is shown in Fig. 5. One can see that the behavior

of this curve depends strongly on how ma depends on ms. Characterized by dma/dms at µq = 0, there is a limiting
value, and tricritical curves with smaller value of dma/dms bend downwards (negative curvature), for larger values
they bend upwards (positive curvature).
The standard characterization of the behavior of ms(µq) near µq = 0 is through the Taylor series [1]:

ms(µq)

ms(0)
= 1 +

∑

k=1

ck

( µq
πT

)2k

. (39)
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The first two nontrivial terms c2 and c4 are shown in Fig. 5 in case of a constant g2. The singularity corresponds
to that value of the ms for which the curvature changes sign. It is remarkable that by changing continuously from
negative to positive curvatures (c2 values) we have to go through a singularity.
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FIG. 6. Effect of a µ-dependent ma on the ms-dependence of the critical µq/T obtained for u = 10. From the two pairs of lines
having the same values of Λ/mσ and ma/mσ, the one at the right is obtained by solving (36) with a µ-dependent ma.

To have a hint on which curve could be the physical one we recall that the anomaly is mainly a gauge effect,
connected to the presence of the instantons [32, 33]. This suggests that The dependence of ma on ms should be quite
small, so the physical line is near to dma/dms = 0. Note that all tricritical surfaces in this model with ma =constant
bend downwards.
We can compare our results with the numerical findings of [1]. They found c2 = −3.3(3), c4 = −47(20) with Nf = 3

degenerate quarks. The c2 curve on Fig. 5 reproduces this value at dma/dms = −0.58 with a corresponding value of
c4 = −33.0. This is in the same order of magnitude as in the MC simulation.
In Ref. [25] it was shown that if the strength of the U(1) anomaly, parameter C in the Lagrangian (4), is made

µq-dependent then the critical surface can have a nonmonotonic shape. Since C influences ma, we can observe the
same effect by considering the following dependence of ma on µq, when solving (36):

ma(µq)

mσ
= 1 +

(

ma(0)

mσ
− 1

)

e−µ
2
q
/µ2

q,0 . (40)

For most of the curves with this chemical potential dependent anomaly are very similar to what is obtained earlier,
however one can observe more exotic behavior, too, for some cases. For µq,0/mσ = 0.17 the result is shown in Fig. 6:
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here the surface starts to bend upwards, and later it turns back. This behavior can be very mild (as in our example
with Λ/mσ = 208). In this case coarse lattice measurement would only detect the negative curvature, a high precision
lattice measurement is necessary to reveal the positive curvature near µq = 0. It is interesting that, considering the
global behavior of the curve, the coarser lattice would give a more reliable result in this case.

VI. CONCLUSIONS

We discussed the behavior of the line of tricritical points (TCP) in the chiral limit (mud = 0) of the U(3)L×U(3)R
quark model. We assumed that the value of the strange quark mass, where the TCP hits the µ = 0 line is much larger
than the critical temperature Tc. This is a good approximation in QCD, where the critical temperature is of order
160 MeV, while the constituent strange quark mass is about 450 MeV already at the physical point, and we expect
that the second order line reaches the chiral line (mud = 0) at much higher ms masses. We also assumed that the
η − a0 meson sector, which is heavier than the σ − π sector because of the anomaly, is also much heavier than Tc.
This is again plausible, since already at the physical point ma ∼ 1 GeV.
Under these circumstances the strange and the η−a0 sector decouples from the point of view of the thermodynamics,

which is completely determined by the light degrees of freedom, the σ− π sector. The only way how the heavy sector
can influence the thermodynamics is through the values of the parameters of the effective theory. To achieve this goal
we have to follow the running of the different parameters as well as the degrees of freedom from the heavy scales down
to the thermodynamic scale. This can be performed by following the renormalization group (RG) flow with given
degrees of freedom, and determine the parameters of the effective theories by matching when the degrees of freedom
change. The former yield logarithmic dependence on the heavy scale, the latter effect is power-suppressed. Therefore
in this work the RG flow is determined at one-loop level, and the matching is kept at tree level.
With the decoupling of the strange and η − a0 meson sector, respectively, there are two stages of effective models

in the U(3)L × U(3)R linear sigma model: the first is the U(2)L × U(2)R, while the second is the SU(2)L × SU(2)R
linear sigma model. We determined the corresponding beta functions in these models, and solved the RG flow down
to the scale of the temperature T. The thermodynamics is determined at one-loop level in [18] – we now included the
running coupling constant in the result.
As a result we can determine the free energy for any given parameter sets, and we can determine those points where

tricritical points (TCP) are located. With some plausible assumptions, the TCP’s with fixed α = µq/T (where µq is
the quark chemical potential) form a surface in the ms −ma − g2 space in the U(3)L × U(3)R linear sigma model.
Surfaces for different α never cross, therefore the α = 0 surface is a limiting surface.
If we want to draw consequences for QCD, we have to specify how ma and g2 depend on ms in the chiral u, d

regime. Since it is not known, we explored several possibilities. Depending on the details, this model can describe an
upward bending (positive curvature) surface or a downward bending (negative curvature) surface. Taking into account
the explicit chemical potential dependence of the anomaly constant, the curvature we can change from positive to
negative curvatures along the curve. In this case the value of the curvature at µq = 0 would yield false information
about the global behavior of the curve.
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Appendix A: Renormalization group equations in the U(2)L × U(2)R model

We start from the renormalized Lagrangian of (20), and introduce the counterterm Lagrangian which in Fourier
space reads

δLU(2) = δZψψ̄2/kψ2− δgψ̄2(ϕ5− iγ5a5)ψ2+
δZ

2
ϕ(k2− δm2

ϕ)ϕ+
δZ

2
a(k2− δm2

a)a−
δλ

4
(ϕ2+a2)2− δλ2

2
(ϕ2a2− (ϕa)2),

(A1)
where we used the shorthand δm2

ϕ/a = δm2 ∓ δc and the observation that the wave function renormalization for the

ϕ and a sector is the same.
The goal is to determine the counterterms at one-loop level. To this end we work at zero temperature in the

symmetric phase. The method is to determine the expectation value of some physical observables and require finiteness.
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In order to simplify the treatment we introduce a background field for the σ field through the shift σ → σ + x. The
expansion in x is used for zero momentum external legs. The new Lagrangian is obtained from (20) reads

LU(2) =−
m2
ϕ

2
x2 − λ

4
x4 − σx(m2

ϕ + λx2) + ψ̄2(i∂/ −mψ)ψ2 +
1

2
(∂µϕ)

2 +
1

2
(∂µa)

2 − m2
σ

2
σ2 − m2

π

2
π2
i −

m2
η

2
η2 − m2

A

2
a2i

−gψ̄2(ϕ5 − iγ5a5)ψ2 − λxσ(ϕ2 + a2)− λ2xσa
2
i − λ2xηπiai −

λ

4
(ϕ2 + a2)2 − λ2

2

[

ϕ2a2 − (ϕa)2
]

, (A2)

where

mψ = gx, m2
σ = m2

ϕ + 3λx2, m2
π = m2

ϕ + λx2, m2
η = m2

a + λx2, m2
A = m2

a + λx2 + λ2x
2, (A3)

with m2
ϕ and m2

a defined below (20).

1. The fermionic wave function and g renormalization

We calculate on the x background the fermion self-energy Σψ = i
〈

Tψ2ψ̄2

〉

amp
. Introducing the notation

∫

p

=

∫

d4p

(2π)4
and using standard Feynman rules we find

Σψ(k) = −δZψ/k + xδg − ig2
∫

p

[

(

iGσ(p− k) + 3iGa(p− k)
)

iG(p)−
(

iGη(p− k) + 3iGπ(p− k)
)

γ5iG(p)γ5
]

, (A4)

where G and G are the bosonic and fermionic propagators defined as

G(p) =
1

p2 −m2 + iε
, G(p) = /p+m

p2 −m2 + iε
, (A5)

with the corresponding masses.
Since the integral has mass dimension, the part proportional to /k or x are dimensionless which means that they are

at most logarithmically divergent. Therefore the masses should be taken into account only through a Taylor expansion.
But, the expansion in the bosonic masses yields m2 ∼ x2 terms, which are convergent, so we can forget about the
bosonic masses. The same is true for the fermionic mass in the denominator. What remains for the divergent piece is

Σdiv
ψ (k) = −δZψ/k + xδg + 4ig2

∫

p

G(p− k)
[

G(p)− γ5G(p)γ5
]

. (A6)

In the numerator we find /p+m− γ5(/p+m)γs = 2/p, which results in

δg = 0. (A7)

For δZψ we have to calculate the remaining integral. Doing this with standard techniques (cf. for example [34]) using
cut-off regularization we find

Σdiv
ψ (k) =

(

−δZψ − g2

4π2
ln

Λ2

µ2

)

/k, (A8)

and so, the counterterm ensuring the finiteness of Σψ(k) is

δZψ = − g2

4π2
ln

Λ2

µ2
. (A9)

2. The bosonic wave function and λ renormalization

We calculate next the σ self-energy on the given x background. We find

Σσ(k) = −δZk2 + δm2
ϕ + 3δλx2 + 3λ

∫

p

iGσ(p) + 3λ

∫

p

iGπ(p) + λ

∫

p

iGη(p)

+3(λ+ λ2)

∫

p

iGa(p)− ig2
∫

p

Tr [G(p− k)G(p)] + 18iλ2x2
∫

p

Gσ(p− k)Gσ(p)

+6iλ2x2
∫

p

Gπ(p− k)Gπ(p) + 2iλ2x2
∫

p

Gη(p− k)Gη(p) + 6i(λ+ λ2)
2x2

∫

p

Ga(p− k)Ga(p). (A10)
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The minus sign is because the fermionic bubble involves a closed fermion loop. To determine δZ and δmϕ we need
only the x = 0 sector:

Σσ(k, x = 0) = −δZk2 + δm2
ϕ + 6λ

∫

p

iGϕ(p) + (4λ+ 3λ2)

∫

p

iGa(p)− ig2
∫

p

Tr
[

G(p− k)G(p)
]

. (A11)

After evaluating the integrals, without writing the Λ2 corrections we find

Σdiv
σ (k, x = 0) = −δZk2 + δm2

ϕ +
6λ

16π2
m2
ϕ ln

m2
ϕ

Λ2
+

4λ+ 3λ2
16π2

m2
a ln

m2
a

Λ2
− g2

24π2
k2 ln

k2

Λ2
. (A12)

Therefore

δZ =
g2

12π2
ln

Λ2

µ2
, δm2

ϕ =
1

16π2
ln

Λ2

µ2

[

6λm2
ϕ + (4λ+ 3λ2)m

2
a

]

. (A13)

For the determination of δλ we need the self-energy at k = 0. After evaluating the integrals we find

Σdiv
σ (k = 0)= δm2

ϕ − 1

16π2
ln

Λ2

µ2

[

6λm2
ϕ + (4λ+ 3λ2)m

2
a

]

+ 3δλx2 − 3x2

16π2
ln

Λ2

µ2

[

13λ2 + 3(λ+ λ2)
2 − 4g4

]

. (A14)

We obtain for δm2
ϕ the previous result given in (A13), and we also have

δλ =
1

16π2
ln

Λ2

µ2

[

13λ2 + 3(λ+ λ2)
2 − 4g4

]

. (A15)

3. Renormalization of λ2

We apply the procedure above, but now for the a self-energy. Since the wave function renormalization is the same
as for ϕ we need only the k = 0 case. We find:

Σa(k = 0) = δm2
a + (δλ+ δλ2)x

2 + 5λ

∫

p

iGa(p) + (3λ+ 2λ2)

∫

p

iGπ(p)

+λ

∫

p

iGη(p) + (λ+ λ2)

∫

p

iGσ(p)− ig2
∫

p

Tr
[

G(p)G(p)
]

+4i(λ+ λ2)
2x2

∫

p

Gσ(p)Ga(p) + iλ22x
2

∫

p

Gπ(p)Gη(p). (A16)

After evaluating the integrals we find for the divergent pieces

Σdiv
a (k = 0)= δm2

a + (δλ+ δλ2)x
2 − 1

16π2
ln

Λ2

µ2

[

6λm2
a + (4λ+ 3λ2)m

2
ϕ

]

− x2

16π2
ln

Λ2

µ2

[

16λ2 + 18λλ2 + 5λ22 − 12g4
]

.

(A17)

For the a-mass counterterm we find he following expression

δm2
a =

1

16π2
ln

Λ2

µ2

[

6λm2
a + (4λ+ 3λ2)m

2
ϕ

]

, (A18)

which is the same as the expression for the σ mass, with the mϕ ↔ ma interchange. This shows that the sum and
the difference of the masses are renormalized multiplicatively: since m2

ϕ/a = m2 ∓ c, so we find

δc = c
2λ− 3λ2
16π2

ln
Λ2

µ2
, δm2 = m2 10λ+ 3λ2

16π2
ln

Λ2

µ2
. (A19)

From (A17) we can also read off the counterterm for λ+ λ2:

δλ+ δλ2 =
1

16π2
ln

Λ2

µ2

[

16λ2 + 18λλ2 + 5λ22 − 12g4
]

. (A20)

Comparing it with the expression of δλ given in (A15) we find

δλ2 =
2

16π2
ln

Λ2

µ2

[

λ2(6λ+ λ2)− 4g4
]

. (A21)
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4. β functions

The bare-field Lagrangian reads

LU(2),0 = ψ̄02

[

i∂/−g0(ϕ05−iγ5a05)
]

ψ02+
1

2
(∂µϕ0)

2+
1

2
(∂µa0)

2−
m2

0ϕ

2
ϕ2
0−

m2
0a

2
a20−

λ0
4
(ϕ2

0+a
2
0)

2−λ02
2

[

ϕ2
0a

2
0−(ϕ0a0)

2
]

,

(A22)
where all the fields and couplings are bare. The bare couplings are RG invariant, since they depend only on the
regularization:

dg0
d lnµ

=
dm2

0ϕ

d lnµ
=
dm2

0a

d lnµ
=

dλ0
d lnµ

=
dλ02
d lnµ

= 0, (A23)

where

d

d lnµ
=

∂

∂ lnµ
+ βg

∂

∂g
+ βλ

∂

∂λ
+ β2

∂

∂λ2
+ γϕ

∂

∂m2
ϕ

+ γa
∂

∂m2
a

. (A24)

To obtain the bare quantities from the counterterms, we first have to change to renormalized fields ψ02 = Z
1/2
ψ ψ2,

ϕ0 = Z1/2ϕ, and a0 = Z1/2a:

L2 = ψ̄2

[

Zψi∂/ − ZψZ
1/2g0(ϕ5 − iγ5a5)

]

ψ2 +
Z

2
(∂µϕ)

2 +
Z

2
(∂µa)

2

−
Zm2

0ϕ

2
ϕ2 − Zm2

0a

2
a2 − Z2λ0

4
(ϕ2 + a2)2 − Z2λ02

2

[

ϕ2a2 − (ϕa)2
]

. (A25)

Comparing it with the renormalized Lagrangian defined as the sum of (20) and (A1) we find Zψ = 1 + δZψ and
Z = 1 + δZ, so that the relations between the bare couplings and counterterms read

ZψZ
1/2g0 = g + δg, Zm2

0ϕ = m2
ϕ + δm2

ϕ, Zm2
0a = m2

a + δm2
a,

Z2λ0 = λ+ δλ, Z2λ02 = λ2 + δλ2. (A26)

These relations can be inverted, and at one-loop level we obtain:

g0 = g −
(

1

2
δZ + δZψ

)

g + δg, m2
0ϕ = m2

ϕ − δZm2
ϕ + δm2

ϕ, m2
0a = m2

a − δZm2
a + δm2

a,

λ0 = λ− 2δZλ+ δλ, λ02 = λ2 − 2δZλ2 + δλ2. (A27)

Perturbative hierarchy requires that when there is a lnµ dependence in the quantity, then only the ∂/(∂ lnµ) derivative
acts on it. Then, using (A24) we find

dg0
d lnµ

= βg −
∂

∂ lnµ

[(

1

2
δZ + δZψ

)

g − δg

]

= 0, (A28)

and in consequence

βg =
∂

∂ lnµ

[(

1

2
δZ + δZψ

)

g − δg

]

. (A29)

In a similar way we find

γϕ =
∂

∂ lnµ

[

δZm2
ϕ − δm2

ϕ

]

, γa =
∂

∂ lnµ

[

δZm2
a − δm2

a

]

,

βλ =
∂

∂ lnµ
[2δZλ− δλ] , β2 =

∂

∂ lnµ
[2δZλ2 − δλ2] . (A30)

Using the expression of the counterterms determined in previous subsections of this sections we have:

∂δZψ
∂ lnµ

=
g2

2π2
,

∂δZ

∂ lnµ
= − g2

6π2
,

∂δg

∂ lnµ
= 0,

∂δλ

∂ lnµ
= − 1

8π2

[

13λ2 + 3(λ+ λ2)
2 − 4g4

]

,
∂δλ2
∂ lnµ

= − 1

4π2

[

λ2(6λ+ λ2)− 4g4
]

,

∂δm2
ϕ/a

∂ lnµ
= − 1

8π2

[

6λm2
ϕ/a + (4λ+ 3λ2)m

2
a/ϕ

]

. (A31)
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With these expressions, we obtain from (A29) and (A30) the following one-loop β-functions:

dg

d lnµ
= βg =

5g3

12π2
, (A32a)

dλ

d lnµ
= βλ =

1

8π2

[

13λ2 + 3(λ+ λ2)
2 − 4g4 − 8

3
g2λ

]

, (A32b)

dλ2
d lnµ

= β2 =
1

4π2

[

λ2(6λ+ λ2)− 4g4 − 4

3
g2λ2

]

. (A32c)

dm2
ϕ/a

d lnµ
= γϕ/a =

1

8π2

[

(

6λ− 4

3
g2
)

m2
ϕ/a + (4λ+ 3λ2)m

2
a/ϕ

]

. (A32d)

Appendix B: Renormalization group in the SU(2)L × SU(2)R linear sigma model

We start from the renormalized Lagrangian (26) and add to it the the following counterterm Lagrangian:

δLSU(2) = ψ̄
[

Zψi∂/ − δg(σ + iτiπi)
]

ψ +
Z

2
(∂µϕ)

2 −
δm2

ϕ

2
ϕ2 − δλ

4
(σ2 + π2

i )
2. (B1)

The goal is to determine the counterterms at one-loop level. To do this, we will follow the same strategy as in
Appendix A. To facilitate the discussion we introduce again the background field x. After the shift σ → σ + x the
Lagrangian reads

LSU(2) =−
m2
ϕ

2
x2 − λ

4
x2 − σx(m2

ϕ + λx2) + ψ̄(i∂/ −mψ)ψ − gψ̄(σ + iτiπi)ψ +
1

2
(∂µσ)

2 − m2
σ

2
σ2 +

1

2
(∂µπ)

2 − m2
π

2
π2

−λxσ(σ2 + π2
i )−

λ

4
(σ2 + π2

i )
2, (B2)

where

m2
ψ = gx, m2

σ = m2
ϕ + 3λx2, m2

π = m2
ϕ + λx2. (B3)

1. The fermion wave function and g renormalization

We calculate the fermion self-energy on the background x:

Σψ(k, x) = −δZψ/k + δgx− ig2
∫

p

[iGσ(p− k)iG(p)− 3iGπ(p− k)γ5iG(p)γ5] , (B4)

where Gσ, Gπ, and G are the bosonic and fermion propagators introduced in (A5) with the corresponding masses
given in (B3). Taylor expanding the bosonic propagators in x and using that γ5 anticommutes with all the other
gamma matrices, we find

Σψ(k) = δgx− δZψ/k + 2ig2
∫

p

2/p−mψ

((p− k)2 −m2
ϕ + iε)(p2 −m2

ψ + iε)
. (B5)

After evaluating the integrals, finiteness of the result requires the following expressions for the counterterms

δZψ = − g2

8π2
ln

Λ2

µ2
, δg = − g3

8π2
ln

Λ2

µ2
. (B6)

2. The σ mass, wave function and λ renormalization

Next, we calculate the σ self-energy:

Σσ(k) =−δZk2 + δm2
ϕ + 3δλx2 + 3λ

∫

p

iGσ(p) + 3λ

∫

p

iGπ(p)− ig2
∫

p

Tr [G(p− k)G(p)]

+18iλ2x2
∫

p

Gσ(p− k)Gσ(p) + 6iλ2x2
∫

p

Gπ(p− k)Gπ(p). (B7)
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The minus sign is because the fermionic bubble. After evaluating the integrals we find, neglecting the Λ2 corrections

Σdiv
σ (k) = −δZk2 + δm2

ϕ + 3δλx2 − 3λ

16π2

(

2m2
ϕ + 4λx2

)

ln
Λ2

µ2
+

g2

4π2

(

k2

6
+ 3g2x2

)

ln
Λ2

µ2
− 3λ2

2π2
ln

Λ2

µ2
. (B8)

Therefore, the expression of the counterterms is

δZ =
g2

24π2
ln

Λ2

µ2
, δm2

ϕ =
3λ

8π2
m2
ϕ ln

Λ2

µ2
, δλ =

3λ2 − g4

4π2
ln

Λ2

µ2
. (B9)

3. β-functions

We again use the fact that the bare couplings are renormalization group invariant:

dg0
d lnµ

=
dm2

0

d lnµ
=

dλ0
d lnµ

= 0, (B10)

where

d

d lnµ
=

∂

∂ lnµ
+ βg

∂

∂g
+ βλ

∂

∂λ
+ γϕ

∂

∂m2
ϕ

. (B11)

This leads to:

βg =
∂

∂ lnµ

[(

δZ +
1

2
δZψ

)

g − δg

]

, γ =
∂

∂ lnµ

[

δZm2
ϕ − δm2

ϕ

]

, βλ =
∂

∂ lnµ
[2δZλ− δλ] . (B12)

Using the counterterms determined in the previous two subsections one has:

∂δZψ
∂ lnµ

=
g2

4π2
,

∂δZ

∂ lnµ
= − g2

12π2
,

∂δg

∂ lnµ
=

g3

4π2
,

∂δλ

∂ lnµ
=

−3λ2 + g4

2π2
,

∂δm2
ϕ

∂ lnµ
= −

3λm2
ϕ

4π2
. (B13)

Then, we find the following one-loop β-functions

dg

d lnµ
= βg = − 5g3

24π2
,

dλ

d lnµ
= βλ =

9λ2 − 3g4 − λg2

6π2
,

1

m2
ϕ

dm2
ϕ

d lnµ
= γ =

9λ− g2

12π2
m2
ϕ. (B14)

Appendix C: Numerical strategy to solve the TCP equations

For numerical purposes it is advantageous to choose α, g2 = g2(µ) and ma as parametrization variables. Then we
can proceed as follows. From (36) we find

u(µ) =
6F̄(α)

π2
g2, T 2 =

1

2g2
[

g2F̄(α)
π2 + 1+ 3

π2α2
] , (C1)

then from (27)

Λ2
0 = µ2e

− 24π2

5g2(µ) =
e
2ξ− 24π2

5g2(µ)

2g2(µ)
[

g2(µ)F̄(α)
π2 + 1 + 3

π2α2
] . (C2)

Once we know g2(µ), T, Λ0 and u(µ) we can compute mσ by solving m2
σ = m2

σ(µ = mσ) equation using (33). Since
now mσ(µ) = 1 is the mass scale, in view of (33) we have to solve

mσ = exp

[

7g20
24π2

∫ ln mσ

µ

0

ds

1 + bg2(µ)s

1 + 6Y z(s)

1− 3Y z(s)

]

, (C3)
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where Y = (u(µ)− 1)/(3u(µ) + 4). If we know mσ then we can have g2(mσ) from (27) which can be kept fixed.
From the running of g (27) and u (31) we find

g2(ma) =
g2

1 +
5g2

12π2
ln
ma

µ

,
2u(ma)− 1

3u(ma) + 4
=

2u(µ)− 1

3u(µ) + 4

(

1 +
ln(ma/µ)

ln(µ/Λ0)

)21/5

. (C4)

From (28) we find:

Λ̄4
0 = 2m6

ag
2(µ)

[

g2(µ)F̄(α)

π2
+ 1 +

3

π2
α2

]

e
24π2

5g2(µ) . (C5)

Having Λ̄4
0, u(ma) and u(ms) we can use the solution of the U(2)L×U(2)R RG running (25) to find ms. Finally from

ms and g(ma) we compute from (21):

g2(ms) =
g2(ma)

1− 5g2

6π2
ln
ms

ma

. (C6)
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