695 research outputs found

    Stretched Polymers in Random Environment

    Full text link
    We survey recent results and open questions on the ballistic phase of stretched polymers in both annealed and quenched random environments.Comment: Dedicated to Erwin Bolthausen on the occasion of his 65th birthda

    WNT10B: A locus increasing risk of brachygnathia inferior in Brown Swiss cattle.

    Get PDF
    Shortening of the mandible (brachygnathia inferior) is a congenital, often inherited and variably expressed craniofacial anomaly in domestic animals including cattle. Brachygnathia inferior can lead to poorer animal health and welfare and reduced growth, which ultimately affects productivity. Within the course of the systematic conformation scoring, cases with a frequency of about 0.1% were observed in the Brown Swiss cattle population of Switzerland. In contrast, this anomaly is almost unknown in the Original Braunvieh population, representing the breed of origin. Because none of the individually examined 46 living offspring of our study cohort of 145 affected cows showed the trait, we can most likely exclude a monogenic-dominant mode of inheritance. We hypothesized that either a monogenic recessive or a complex mode of inheritance was underlying. Through a genome-wide association study of 145 cases and 509 controls with imputed 624k SNP data, we identified a 4.5 Mb genomic region on bovine chromosome 5 significantly associated with this anomaly. This locus was fine-mapped using whole-genome sequencing data. A run of homozygosity analysis revealed a critical interval of 430 kb. A breed specific frameshift duplication in WNT10B (rs525007739; c.910dupC; p.Arg304ProfsTer14) located in this genomic region was found to be associated with a 21.5-fold increased risk of brachygnathia inferior in homozygous carriers. Consequently, we present for the first time a genetic locus associated with this well-known anomaly in cattle, which allows DNA-based selection of Brown Swiss animals at decreased risk for mandibular shortening. In addition, this study represents the first large animal model of a WNT10B-related inherited developmental disorder in a mammalian species

    Lyapunov exponents of Green's functions for random potentials tending to zero

    Full text link
    We consider quenched and annealed Lyapunov exponents for the Green's function of Δ+γV-\Delta+\gamma V, where the potentials V(x),xZdV(x), x\in\Z^d, are i.i.d. nonnegative random variables and γ>0\gamma>0 is a scalar. We present a probabilistic proof that both Lyapunov exponents scale like cγc\sqrt{\gamma} as γ\gamma tends to 0. Here the constant cc is the same for the quenched as for the annealed exponent and is computed explicitly. This improves results obtained previously by Wei-Min Wang. We also consider other ways to send the potential to zero than multiplying it by a small number.Comment: 16 pages, 3 figures. 1 figure added, very minor corrections. To appear in Probability Theory and Related Fields. The final publication is available at http://www.springerlink.com, see http://www.springerlink.com/content/p0873kv68315847x/?p=4106c52fc57743eba322052bb931e8ac&pi=21

    Tibial internal rotation in combined anterior cruciate ligament and high-grade anterolateral ligament injury and its influence on ACL length

    Full text link
    BACKGROUND Assessment of combined anterolateral ligament (ALL) and anterior cruciate ligament (ACL) injury remains challenging but of high importance as the ALL is a contributing stabilizer of tibial internal rotation. The effect of preoperative static tibial internal rotation on ACL -length remains unknown. The aim of the study was analyze the effect of tibial internal rotation on ACL length in single-bundle ACL reconstructions and to quantify tibial internal rotation in combined ACL and ALL injuries. METHODS The effect of tibial internal rotation on ACL length was computed in a three-dimensional (3D) model of 10 healthy knees with 5° increments of tibial internal rotation from 0 to 30° resulting in 70 simulations. For each step ACL length was measured. ALL injury severity was graded by a blinded musculoskeletal radiologist in a retrospective analysis of 61 patients who underwent single-bundle ACL reconstruction. Preoperative tibial internal rotation was measured in magnetic resonance imaging (MRI) and its diagnostic performance was analyzed. RESULTS ACL length linearly increased 0.7 ± 0.1 mm (2.1 ± 0.5% of initial length) per 5° of tibial internal rotation from 0 to 30° in each patient. Seventeen patients (27.9%) had an intact ALL (grade 0), 10 (16.4%) a grade 1, 21 (34.4%) a grade 2 and 13 (21.3%) a grade 3 injury of the ALL. Patients with a combined ACL and ALL injury grade 3 had a median static tibial internal rotation of 8.8° (interquartile range (IQR): 8.3) compared to 5.6° (IQR: 6.6) in patients with an ALL injury (grade 0-2) (p = 0.03). A cut-off > 13.3° of tibial internal rotation predicted a high-grade ALL injury with a specificity of 92%, a sensitivity of 30%; area under the curve (AUC) 0.70 (95% CI: 0.54-0.85) (p = 0.03) and an accuracy of 79%. CONCLUSION ACL length linearly increases with tibial internal rotation from 0 to 30°. A combined ACL and high-grade ALL injury was associated with greater preoperative tibial internal rotation. This potentially contributes to unintentional graft laxity in ACL reconstructed patients, in particular with concomitant high-grade ALL tears. STUDY DESIGN Cohort study; Level of evidence, 3

    Influence of Bone Morphology on In Vivo Tibio-Femoral Kinematics in Healthy Knees during Gait Activities

    Full text link
    An improved understanding of the relationships between bone morphology and in vivo tibio-femoral kinematics potentially enhances functional outcomes in patients with knee disorders. The aim of this study was to quantify the influence of femoral and tibial bony morphology on tibio-femoral kinematics throughout complete gait cycles in healthy subjects. Twenty-six volunteers underwent clinical examination, radiographic assessment, and dynamic video-fluoroscopy during level walking, downhill walking, and stair descent. Femoral computer-tomography (CT) measurements included medial condylar (MC) and lateral condylar (LC) width, MC and LC flexion circle, and lateral femoral condyle index (LFCI). Tibial CT measurements included both medial (MTP) and lateral tibial plateau (LTP) slopes, depths, lengths, and widths. The influence of bony morphology on tibial internal/external rotation and anteroposterior (AP)-translation of the lateral and medial compartments were analyzed in a multiple regression model. An increase in tibial internal/external rotation could be demonstrated with decreasing MC width β: -0.30 (95% CI: -0.58 to -0.03) (p = 0.03) during the loaded stance phase of level walking. An increased lateral AP-translation occurred with both a smaller LC flexion circle β: -0.16 (95% CI: -0.28 to -0.05) (p = 0.007) and a deeper MTP β: 0.90 (95% CI: 0.23 to 1.56) (p = 0.01) during the loaded stance phase of level walking. The identified relationship between in vivo tibio-femoral kinematics and bone morphology supports a customized approach and individual assessment of these factors in patients with knee disorders and potentially enhances functional outcomes in anterior cruciate ligament injuries and total knee arthroplasty

    Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography

    Get PDF
    Full-field optical coherence tomography (FF-OCT) is a widely used technique for applications such as biological imaging, optical metrology, and materials characterization, providing structural and spectral information. By spectral analysis of the backscattered light, the technique of spectroscopic-OCT enables the differentiation of structures having different spectral properties, but not the determination of their reflectance spectrum. For surface measurements, this can be achieved by applying a Fourier transform to the interferometric signals and using an accurate calibration of the optical system. An extension of this method is reported for local spectroscopic characterization of transparent samples and in particular for the determination of depth-resolved reflectance spectra of buried interfaces. The correct functioning of the method is demonstrated by comparing the results with those obtained using a program based on electromagnetic matrix methods for stratified media. Experimental measurements of spatial resolutions are provided to demonstrate the smallest structures that can be characterized

    NKG2D regulation of lung pathology and dendritic cell function following respiratory syncytial virus infection

    Get PDF
    © The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. Background. Respiratory syncytial virus (RSV) is a common cause of respiratory tract infection in vulnerable populations. Natural killer (NK) cells and dendritic cells (DC) are important for the effector functions of both cell types following infection. Methods. Wild-type and NKG2D-deficient mice were infected with RSV. Lung pathology was assessed by histology. Dendritic cell function and phenotype were evaluated by enzyme-linked immunosorbent assay and flow cytometry. The expression of NKG2D ligands on lung and lymph node DCs was measured by immunostaining and flow cytometry. Adoptive transfer experiments were performed to assess the importance of NKG2D-dependent DC function in RSV infection. Results. NKG2D-deficient mice exhibited greater lung pathology, marked by the accumulation of DCs following RSV infection. Dendritic cells isolated from NKG2D-deficient mice had impaired responses toward Toll-like receptor ligands. Dendritic cells expressed NKG2D ligands on their surface, which was further increased in NKG2D-deficient mice and during RSV infection. Adoptive transfer of DCs isolated from wild-type mice into the airways of NKG2D-deficient mice ameliorated the enhanced inflammation in NKG2D-deficient mice after RSV infection. Conclusion. NKG2D-dependent interactions with DCs control the phenotype and function of DCs and play a critical role in pulmonary host defenses against RSV infection
    corecore