2,728 research outputs found
Thermodynamic potential of the Periodic Anderson Model with the X-boson method: Chain Approximation
The Periodic Anderson Model (PAM) in the limit has been studied
in a previous work employing the cumulant expansion with the hybridization as
perturbation (M. S. Figueira, M. E. Foglio and G. G. Martinez, Phys. Rev. B
\textbf{50}, 17933 (1994)). When the total number of electrons is
calculated as a function of the chemical potential in the ``Chain
Approximation'' (CHA), there are three values of the chemical potential
for each in a small interval of at low (M. S Figueira, M. E
Foglio, Physica A 208 (1994)). We have recently introduced the ``X-boson''
method, inspired in the slave boson technique of Coleman, that solves the
problem of non conservation of probability (completeness) in the CHA as well as
removing the spurious phase transitions that appear with the slave boson method
in the mean field approximation. In the present paper we show that the X-boson
method solves also the problem of the multiple roots of that
appear in the CHA.Comment: 13 pages, 6 figures e-mails: [email protected], [email protected],
[email protected]
Laser-induced nonsequential double ionization: kinematic constraints for the recollision-excitation-tunneling mechanism
We investigate the physical processes in which an electron, upon return to
its parent ion, promotes a second electron to an excited state, from which it
subsequently tunnels. Employing the strong-field approximation and saddle-point
methods, we perform a detailed analysis of the dynamics of the two electrons,
in terms of quantum orbits, and delimit constraints for their momentum
components parallel to the laser-field polarization. The kinetic energy of the
first electron, upon return, exhibits a cutoff slightly lower than ,
where is the ponderomotive energy, as in rescattered above-threshold
ionization (ATI). The second electron leaves the excited state in a direct
ATI-like process, with the maximal energy of . We also compute
electron-momentum distributions, whose maxima agree with our estimates and with
other methods.Comment: 13 pages, 4 figure
Stabilization not for certain and the usefulness of bounds
Stabilization is still a somewhat controversial issue concerning its very
existence and also the precise conditions for its occurrence. The key quantity
to settle these questions is the ionization probability, for which hitherto no
computational method exists which is entirely agreed upon. It is therefore very
useful to provide various consistency criteria which have to be satisfied by
this quantity, whose discussion is the main objective of this contribution. We
show how the scaling behaviour of the space leads to a symmetry in the
ionization probability, which can be exploited in the mentioned sense.
Furthermore, we discuss how upper and lower bounds may be used for the same
purpose. Rather than concentrating on particular analytical expressions we
obtained elsewhere for these bounds, we focus in our discussion on the general
principles of this method. We illustrate the precise working of this procedure,
its advantages, shortcomings and range of applicability. We show that besides
constraining possible values for the ionization probability these bounds, like
the scaling behaviour, also lead to definite statements concerning the physical
outcome. The pulse shape properties which have to be satitisfied for the
existence of asymptotical stabilization is the vanishing of the total classical
momentum transfer and the total classical displacement and not smoothly
switched on and off pulses. Alternatively we support our results by general
considerations in the Gordon-Volkov perturbation theory and explicit studies of
various pulse shapes and potentials including in particular the Coulomb- and
the delta potential.Comment: 12 pages Late
Quantum interference in laser-induced nonsequential double ionization in diatomic molecules: the role of alignment and orbital symmetry
We address the influence of the orbital symmetry and of the molecular
alignment with respect to the laser-field polarization on laser-induced
nonsequential double ionization of diatomic molecules, in the length and
velocity gauges. We work within the strong-field approximation and assume that
the second electron is dislodged by electron-impact ionization, and also
consider the classical limit of this model. We show that the electron-momentum
distributions exhibit interference maxima and minima due to the electron
emission at spatially separated centers. The interference patterns survive the
integration over the transverse momenta for a small range of alignment angles,
and are sharpest for parallel-aligned molecules. Due to the contributions of
transverse-momentum components, these patterns become less defined as the
alignment angle increases, until they disappear for perpendicular alignment.
This behavior influences the shapes and the peaks of the electron momentum
distributions.Comment: 12 pages, 7 figures; some discussions have been extended and some
figures slightly modifie
Laser-induced nonsequential double ionization at and above the recollision-excitation-tunneling threshold
We perform a detailed analysis of the recollision-excitation-tunneling (RESI)
mechanism in laser-induced nonsequential double ionization (NSDI), in which the
first electron, upon return, promotes a second electron to an excited state,
from which it subsequently tunnels, based on the strong-field approximation. We
show that the shapes of the electron momentum distributions carry information
about the bound-state with which the first electron collides, the bound state
to which the second electron is excited, and the type of electron-electron
interaction. Furthermore, one may define a driving-field intensity threshold
for the RESI physical mechanism. At the threshold, the kinetic energy of the
first electron, upon return, is just sufficient to excite the second electron.
We compute the distributions for helium and argon in the threshold and
above-threshold intensity regime. In the latter case, we relate our findings to
existing experiments. The electron-momentum distributions encountered are
symmetric with respect to all quadrants of the plane spanned by the momentum
components parallel to the laser-field polarization, instead of concentrating
on only the second and fourth quadrants.Comment: 14 pages, 7 figure
Impact of Si nanocrystals in a-SiOx<Er> in C-Band emission for applications in resonators structures
Si nanocrystals (Si-NC) in a-SiOx were created by high temperature
annealing. Si-NC samples have large emission in a broadband region, 700nm to
1000nm. Annealing temperature, annealing time, substrate type, and erbium
concentration is studied to allow emission at 1550 nm forsamples with erbium.
Emission in the C-Band region is largely reduced by the presence of Si-NC. This
reduction may be due to less efficient energy transfer processes from the
nanocrystals than from the amorphous matrix to the Er3+ ions, perhaps due to
the formation of more centro-symmetric Er3+ sites at the nanocrystal surfaces
or to very different optimal erbium concentrations between amorphous and
crystallized samples.Comment: 3 pages, 4 figure
- …