2,091 research outputs found

    A new Q-matrix in the Eight-Vertex Model

    Full text link
    We construct a QQ-matrix for the eight-vertex model at roots of unity for crossing parameter η=2mK/L\eta=2mK/L with odd LL, a case for which the existing constructions do not work. The new QQ-matrix \Q depends as usual on the spectral parameter and also on a free parameter tt. For t=0t=0 \Q has the standard properties. For t0t\neq 0, however, it does not commute with the operator SS and not with itself for different values of the spectral parameter. We show that the six-vertex limit of \Q(v,t=iK'/2) exists.Comment: 10 pages section on quasiperiodicity added, typo corrected, published versio

    The Dynamical Fingerprint of Core Scouring in Massive Elliptical Galaxies

    Full text link
    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude upon the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius, the radial profiles of the classical anisotropy parameter beta are nearly identical in core galaxies. Moreover, they match quantitatively the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.Comment: 8 pages, 3 figures, accepted by Ap

    The Q-operator and Functional Relations of the Eight-vertex Model at Root-of-unity η=2mKN\eta = \frac{2m K}{N} for odd N

    Full text link
    Following Baxter's method of producing Q_{72}-operator, we construct the Q-operator of the root-of-unity eight-vertex model for the crossing parameter η=2mKN\eta = \frac{2m K}{N} with odd NN where Q_{72} does not exist. We use this new Q-operator to study the functional relations in the Fabricius-McCoy comparison between the root-of-unity eight-vertex model and the superintegrable N-state chiral Potts model. By the compatibility of the constructed Q-operator with the structure of Baxter's eight-vertex (solid-on-solid) SOS model, we verify the set of functional relations of the root-of-unity eight-vertex model using the explicit form of the Q-operator and fusion weights of SOS model.Comment: Latex 28 page; Typos corrected, minor changes in presentation, References added and updated-Journal versio

    The stellar populations of the central region of M31

    Full text link
    We continue the analysis of the dataset of our spectroscopic observation campaign of M31, by deriving simple stellar population properties (age metallicity and alpha-elements overabundance) from the measurement of Lick/IDS absorption line indices. We describe their two-dimensional maps taking into account the dust distribution in M31. 80\% of the values of our age measurements are larger than 10 Gyr. The central 100 arcsec of M31 are dominated by the stars of the classical bulge of M31. They are old (11-13 Gyr), metal-rich (as high as [Z/H]~0.35 dex) at the center with a negative gradient outwards and enhanced in alpha-elements ([alpha/Fe]~ 0.28+- 0.01 dex). The bar stands out in the metallicity map, where an almost solar value of [Z/H] (~0.02+-0.01 dex) with no gradient is observed along the bar position angle (55.7 deg) out to 600 arcsec from the center. In contrast, no signature of the bar is seen in the age and [alpha/Fe] maps, that are approximately axisymmetric, delivering a mean age and overabundance for the bar and the boxy-peanut bulge of 10-13 Gyr and 0.25-0.27 dex, respectively. The boxy/peanut-bulge has almost solar metallicity (-0.04+- 0.01 dex). The mass-to-light ratio of the three components is approximately constant at M/LV ~ 4.4-4.7 Msol/Lsol. The disk component at larger distances is made of a mixture of stars, as young as 3-4 Gyr, with solar metallicity and smaller M/LV (~3+-0.1 Msol/Lsol). We propose a two-phase formation scenario for the inner region of M31, where most of the stars of the classical bulge come into place together with a proto-disk, where a bar develops and quickly transforms it into a boxy-peanut bulge. Star formation continues in the bulge region, producing stars younger than 10 Gyr, in particular along the bar, enhancing its metallicity. The disk component appears to build up on longer time-scales.Comment: Language-edited version, Accepted for publication in A&

    XXZ Bethe states as highest weight vectors of the sl2sl_2 loop algebra at roots of unity

    Full text link
    We show that every regular Bethe ansatz eigenvector of the XXZ spin chain at roots of unity is a highest weight vector of the sl2sl_2 loop algebra, for some restricted sectors with respect to eigenvalues of the total spin operator SZS^Z, and evaluate explicitly the highest weight in terms of the Bethe roots. We also discuss whether a given regular Bethe state in the sectors generates an irreducible representation or not. In fact, we present such a regular Bethe state in the inhomogeneous case that generates a reducible Weyl module. Here, we call a solution of the Bethe ansatz equations which is given by a set of distinct and finite rapidities {\it regular Bethe roots}. We call a nonzero Bethe ansatz eigenvector with regular Bethe roots a {\it regular Bethe state}.Comment: 40pages; revised versio

    The Q-operator for Root-of-Unity Symmetry in Six Vertex Model

    Full text link
    We construct the explicit QQ-operator incorporated with the sl2sl_2-loop-algebra symmetry of the six-vertex model at roots of unity. The functional relations involving the QQ-operator, the six-vertex transfer matrix and fusion matrices are derived from the Bethe equation, parallel to the Onsager-algebra-symmetry discussion in the superintegrable NN-state chiral Potts model. We show that the whole set of functional equations is valid for the QQ-operator. Direct calculations in certain cases are also given here for clearer illustration about the nature of the QQ-operator in the symmetry study of root-of-unity six-vertex model from the functional-relation aspect.Comment: Latex 26 Pages; Typos and small errors corrected, Some explanations added for clearer presentation, References updated-Journal version with modified labelling of sections and formula

    Depleted Galaxy Cores and Dynamical Black Hole Masses

    Full text link
    Shallow cores in bright, massive galaxies are commonly thought to be the result of scouring of stars by mergers of binary supermassive black holes. Past investigations have suggested correlations between the central black hole mass and the stellar light or mass deficit in the core, using proxy measurements of MBHM_{\rm BH} or stellar mass-to-light ratios (Υ\Upsilon). Drawing on a wealth of dynamical models which provide both MBHM_{\rm BH} and Υ\Upsilon, we identify cores in 23 galaxies, of which 20 have direct, reliable measurements of MBHM_{\rm BH} and dynamical stellar mass-to-light ratios (Υ,dyn\Upsilon_{\star,{\rm dyn}}). These cores are identified and measured using Core-S\'ersic model fits to surface brightness profiles which extend out to large radii (typically more than the effective radius of the galaxy); for approximately one fourth of the galaxies, the best fit includes an outer (\sersic) envelope component. We find that the core radius is most strongly correlated with the black hole mass and that it correlates better with total galaxy luminosity than it does with velocity dispersion. The strong core-size-- MBHM_{\rm BH} correlation enables estimation of black hole masses (in core galaxies) with an accuracy comparable to the MBHM_{\rm BH}--σ\sigma relation (rms scatter of 0.30 dex in logMBH\log M_{\rm BH}), without the need for spectroscopy. The light and mass deficits correlate more strongly with galaxy velocity dispersion than they do with black hole mass. Stellar mass deficits span a range of 0.2--39 \mbh, with almost all (87%) being <10MBH< 10 \, M_{\rm BH}; the median value is 2.2 MBHM_{\rm BH}.Comment: Proof-corrected version, AJ, 146, 160, http://stacks.iop.org/1538-3881/146/16

    An elliptic current operator for the 8 vertex model

    Full text link
    We compute the operator which creates the missing degenerate states in the algebraic Bethe ansatz of the 8 vertex model at roots of unity and relate it to the concept of an elliptic current operator. We find that in sharp contrast with the corresponding formalism in the six-vertex model at roots of unity the current operator is not nilpotent with the consequence that in the construction of degenerate eigenstates of the transfer matrix an arbitrary number of exact strings can be added to the set of regular Bethe roots. Thus the original set of free parameters {s,t} of an eigenvector of T is enlarged to become {s,t,\lambda_{c,1}, ..., \lambda_{c,n}\} with arbitrary string centers \lambda_{c,j} and arbitrary n.Comment: 16 pages, Latex typographic errors corrected, text added, reference added, accepted by Journal of Physics A,Mathematical and Genera
    corecore