research

The Q-operator and Functional Relations of the Eight-vertex Model at Root-of-unity η=2mKN\eta = \frac{2m K}{N} for odd N

Abstract

Following Baxter's method of producing Q_{72}-operator, we construct the Q-operator of the root-of-unity eight-vertex model for the crossing parameter η=2mKN\eta = \frac{2m K}{N} with odd NN where Q_{72} does not exist. We use this new Q-operator to study the functional relations in the Fabricius-McCoy comparison between the root-of-unity eight-vertex model and the superintegrable N-state chiral Potts model. By the compatibility of the constructed Q-operator with the structure of Baxter's eight-vertex (solid-on-solid) SOS model, we verify the set of functional relations of the root-of-unity eight-vertex model using the explicit form of the Q-operator and fusion weights of SOS model.Comment: Latex 28 page; Typos corrected, minor changes in presentation, References added and updated-Journal versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019