2,102 research outputs found

    WD0837+185:the formation and evolution of an extreme mass ratio white dwarf-brown dwarf binary in Praesepe

    Full text link
    There is a striking and unexplained dearth of brown dwarf companions in close orbits (< 3AU) around stars more massive than the Sun, in stark contrast to the frequency of stellar and planetary companions. Although rare and relatively short-lived, these systems leave detectable evolutionary end points in the form of white dwarf - brown dwarf binaries and these remnants can offer unique insights into the births and deaths of their parent systems. We present the discovery of a close (orbital separation ~ 0.006 AU) substellar companion to a massive white dwarf member of the Praesepe star cluster. Using the cluster age and the mass of the white dwarf we constrain the mass of the white dwarf progenitor star to lie in the range 3.5 - 3.7 Msun (B9). The high mass of the white dwarf means the substellar companion must have been engulfed by the B star's envelope while it was on the late asymptotic giant branch (AGB). Hence, the initial separation of the system was ~2 AU, with common envelope evolution reducing the separation to its current value. The initial and final orbital separations allow us to constrain the combination of the common envelope efficiency (alpha) and binding energy parameters (lambda) for the AGB star to alpha lambda ~3. We examine the various formation scenarios and conclude that the substellar object was most likely to have been captured by the white dwarf progenitor early in the life of the cluster, rather than forming in situ.Comment: Accepted for publication in ApJ

    High-Resolution Continuum Imaging at 1.3 and 0.7 cm of the W3 IRS 5 Region

    Full text link
    High-resolution images of the hypercompact HII regions (HCHII) in W3 IRS 5 taken with the Very Large Array (VLA) at 1.3 and 0.7 cm are presented. Four HCHII regions were detected with sufficient signal-to-noise ratios to allow the determination of relevant parameters such as source position, size and flux density. The sources are slightly extended in our ~0.2 arcsecond beams; the deconvolved radii are less than 240 AU. A comparison of our data with VLA images taken at epoch 1989.1 shows proper motions for sources IRS 5a and IRS 5f. Between 1989.1 and 2002.5, we find a proper motion of 210 mas at a position angle of 12 deg for IRS 5f and a proper motion of 190 mas at a position angle of 50 deg for IRS 5a. At the assumed distance to W3 IRS 5, 1.83 +/- 0.14 kpc, these offsets translate to proper motions of ~135 km/s and ~122 km/s$ respectively. These sources are either shock ionized gas in an outflow or ionized gas ejected from high mass stars. We find no change in the positions of IRS 5d1/d2 and IRS 5b; and we show through a comparison with archival NICMOS 2.2 micron images that these two radio sources coincide with the infrared double constituting W3 IRS 5. These sources contain B or perhaps O stars. The flux densities of the four sources have changed compared to the epoch 1989.1 results. In our epoch 2002.5 data, none of the spectral indicies obtained from flux densities at 1.3 and 0.7 cm are consistent with optically thin free-free emission; IRS 5d1/d2 shows the largest increase in flux density from 1.3 cm to 0.7 cm. This may be an indication of free-free optical depth within an ionized wind, a photoevaporating disk, or an accretion flow. It is less likely that this increase is caused by dust emission at 0.7 cm.Comment: 13 pages, 3 figures To be published in The Astrophysical Journa

    Ryegrass Seeding Rate Alters Plant Morphology and Size--Possible Implications for Pasture Persistence

    Get PDF
    Poor persistence of perennial ryegrass (Lolium perenne L.) is a major dairy industry issue in New Zealand and Australia. New ryegrass seed is often drilled at 18-30 kg/ha, although previous research indicated that pastures drilled at 10-12 kg/ha can be just as productive (Frame and Boyd 1986; Praat et al. 1996). High seeding rates increase competition between developing seedlings for light, water and nutrients, reduce plant size (Harris 1990) and potentially survival. The experiment reported here investigated the effect of plant density (created by differences in seeding rate) on plant morphology and survival. The hypothesis was that plants established from high seeding rates will be smaller and, therefore, less likely to survive the first summer; a period of substantial environmental stress (e.g., high temperatures, low soil moisture, insect attack)

    X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar

    Get PDF
    A detailed analysis of X-ray data from ROSAT, ASCA, XMM and RXTE for the asynchronous polar V1432 Aql along with Stokes polarimetry data from SAAO, is presented. Power spectra from long-baseline ROSAT data show a spin period of 12150s along with several system related frequency components. However, the second harmonic of the spin period dominates power spectrum in the XMM data. For the optical circular polarization, the dominant period corresponds to half the spin period. The ROSAT data can be explained as due to accretion onto two hot spots that are not anti-podal. The variations seen in the optical polarization and the ASCA and XMM data suggest the presence of at least three accretion foot prints on the white dwarf surface. Two spectral models, a multi-temperature plasma and a photo-ionized plasma model, are used for spectral study. The RXTE PCA data are used to constrain the white dwarf mass to 1.2±\pm0.1 M_odot using the multi-temperature plasma model. A strong soft X-ray excess (<0.8 keV) in the XMM MOS data is well modeled by a blackbody component having a temperature of 80-90 eV. The plasma emission lines seen at 6.7 and 7.0 keV are well fitted using the multi-temperature plasma model, however an additional Gaussian is needed for the 6.4 keV line. The multi-temperature plasma model requires a homogeneous absorber fully covering the source and a partial absorber covering 65% of the source. The photo-ionized plasma model, with a range of Fe column densities, gives a slightly better overall fit and fits all emission lines. The presence of a strong blackbody component, a spin period of 12150s, modulation of the 6.4 keV line flux with spin period, and a very hard X-ray component suggest that V1432 Aql is a polar with X-ray spectral properties similar to that of a soft intermediate polar.Comment: 46 pages, including 13 figures and 4 tables, To appear in The Astrophysical Journal, 20 May 2005 issue, vol. 625, Added Report-no and Journal-ref, no change in the text of the pape
    • …
    corecore