1,294,660 research outputs found

    Zonal flow generation by modulational instability

    Get PDF
    This paper gives a pedagogic review of the envelope formalism for excitation of zonal flows by nonlinear interactions of plasma drift waves or Rossby waves, described equivalently by the Hasegawa-Mima (HM) equation or the quasigeostrophic barotropic potential vorticity equation, respectively. In the plasma case a modified form of the HM equation, which takes into account suppression of the magnetic-surface-averaged electron density response by a small amount of rotational transform, is also analyzed. Excitation of zonal mean flow by a modulated wave train is particularly strong in the modified HM case. A local dispersion relation for a coherent wave train is calculated by linearizing about a background mean flow and used to find the nonlinear frequency shift by inserting the nonlinearly excited mean flow. Using the generic nonlinear Schroedinger equation about a uniform carrier wave, the criterion for instability of small modulations of the wave train is found, as is the maximum growth rate and phase velocity of the modulations and zonal flows, in both the modified and unmodified cases.Comment: Accepted for publication in the Proceedings of the CSIRO/COSNet Workshop on Turbulence and Coherent Structures, Canberra, Australia, 10-13 January 2006 (World Scientific, in preparation, eds. J.P. Denier and J.S. Frederiksen): 15 pages, 2 figures (3 figure files) - resubmitted to correct one-line overflow onto page 1

    Variable-beamwidth antenna without moving parts

    Get PDF
    Basic configuration consists of large parabolic dish reflector, smaller hyperboloidal subreflector, and two sets of monopulse feeds located in conjugate focal region on boresight axis of dish

    Universal Aspects of U(1)U(1) Gauge Field Localization on Branes in DD-dimensions

    Full text link
    In this work, we study the general properties of the DD-vector field localization on (D−d−1)(D-d-1)-brane with co-dimension dd. We consider a conformally flat metric with the warp factor depending only on the transverse extra dimensions. We employ the geometrical coupling mechanism and find an analytical solution for the U(1)U(1) gauge field valid for any warp factor. Using this solution we find that the only condition necessary for localization is that the bulk geometry is asymptotically AdS. Therefore, our solution has an universal validity for any warp factor and is independent of the particular model considered. We also show that the model has no tachyonic modes. Finally, we study the scalar components of the DD-vector field. As a general result, we show that if we consider the coupling with the tensor and the Ricci scalar in higher co-dimensions, there is an indication that both sectors will be localized. As a concrete example, the above techniques are applied for the intersecting brane model. We obtain that the branes introduce boundary conditions that fix all parameters of the model in such a way that both sectors, gauge and scalar fields, are confined.Comment: 26 pages, 5 figures, Accepted version for publication in JHE

    Weak order for the discretization of the stochastic heat equation driven by impulsive noise

    Full text link
    Considering a linear parabolic stochastic partial differential equation driven by impulsive space time noise, dX_t+AX_t dt= Q^{1/2}dZ_t, X_0=x_0\in H, t\in [0,T], we approximate the distribution of X_T. (Z_t)_{t\in[0,T]} is an impulsive cylindrical process and Q describes the spatial covariance structure of the noise; Tr(A^{-\alpha})0 and A^\beta Q is bounded for some \beta\in(\alpha-1,\alpha]. A discretization (X_h^n)_{n\in\{0,1,...,N\}} is defined via the finite element method in space (parameter h>0) and a \theta-method in time (parameter \Delta t=T/N). For \phi\in C^2_b(H;R) we show an integral representation for the error |E\phi(X^N_h)-E\phi(X_T)| and prove that |E\phi(X^N_h)-E\phi(X_T)|=O(h^{2\gamma}+(\Delta t)^{\gamma}) where \gamma<1-\alpha+\beta.Comment: 29 pages; Section 1 extended, new results in Appendix

    Proposed New Test of Spin Effects in General Relativity

    Get PDF
    The recent discovery of a double-pulsar PSR J0737-3039A/B provides an opportunity of unequivocally observing, for the first time, spin effects in general relativity. Existing efforts involve detection of the precession of the spinning body itself. However, for a close binary system, spin effects on the orbit may also be discernable. Not only do they add to the advance of the periastron (by an amount which is small compared to the conventional contribution) but they also give rise to a precession of the orbit about the spin direction. The measurement of such an effect would also give information on the moment of inertia of pulsars

    On the Running of the Cosmological Constant in Quantum General Relativity

    Full text link
    We present arguments that show what the running of the cosmological constant means when quantum general relativity is formulated following the prescription developed by Feynman.Comment: 5 page
    • …
    corecore