603 research outputs found
QUASAT: An orbiting very long baseline interferometer program using large space antenna systems
QUASAT, which stands for QUASAR SATELLITE, is the name given to a new mission being studied by NASA. The QUASAT mission concept involves a free flying Earth orbiting large radio telescope, which will observe astronomical radio sources simultaneously with ground radio telescopes. The primary goal of QUASAT is to provide a system capable of collecting radio frequency data which will lead to a better understanding of extremely high energy events taking place in a variety of celestial objects including quasars, galactic nuclei, interstellar masers, radio stars and pulsars. QUASAT's unique scientific contribution will be the increased resolution in the emission brightness profile maps of the celestial objects
Bent-Double Radio Sources as Probes of Intergalactic Gas
As the most common environment in the universe, groups of galaxies are likely
to contain a significant fraction of the missing baryons in the form of
intergalactic gas. The density of this gas is an important factor in whether
ram pressure stripping and strangulation affect the evolution of galaxies in
these systems. We present a method for measuring the density of intergalactic
gas using bent-double radio sources that is independent of temperature, making
it complementary to current absorption line measurements. We use this method to
probe intergalactic gas in two different environments: inside a small group of
galaxies as well as outside of a larger group at a 2 Mpc radius and measure
total gas densities of and per cubic centimeter (random and systematic
errors) respectively. We use X-ray data to place an upper limit of K on the temperature of the intragroup gas in the small group.Comment: 6 pages, 1 figure, accepted for publication in Ap
Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections.
Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential
Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites
What happens to ferromagnetism at the surfaces and interfaces of manganites?
With the competition between charge, spin, and orbital degrees of freedom, it
is not surprising that the surface behavior may be profoundly different than
that of the bulk. Using a powerful combination of two surface probes, tunneling
and polarized x-ray interactions, this paper reviews our work on the nature of
the electronic and magnetic states at manganite surfaces and interfaces. The
general observation is that ferromagnetism is not the lowest energy state at
the surface or interface, which results in a suppression or even loss of
ferromagnetic order at the surface. Two cases will be discussed ranging from
the surface of the quasi-2D bilayer manganite
(LaSrMnO) to the 3D Perovskite
(LaSrMnO)/SrTiO interface. For the bilayer manganite,
that is, ferromagnetic and conducting in the bulk, these probes present clear
evidence for an intrinsic insulating non-ferromagnetic surface layer atop
adjacent subsurface layers that display the full bulk magnetization. This
abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer
coupling native to these quasi-two-dimensional materials. This is in marked
contrast to the non-layered manganite system
(LaSrMnO/SrTiO), whose magnetization near the interface
is less than half the bulk value at low temperatures and decreases with
increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure
Financial phantasmagoria: corporate image-work in times of crisis
Our purpose in this article is to relate the real movements in the economy during 2008 to the ?image-work? of financial institutions. Over the period January?December 2008 we collected 241 separate advertisements from 61 financial institutions published in the Financial Times. Reading across the ensemble of advertisements for themes and evocative images provides an impression of the financial imaginaries created by these organizations as the global financial crisis unfolded. In using the term ?phantasmagoria? we move beyond its colloquial sense of a set of strange images designed to dazzle towards the more technical connotation used by Ranci�re (2004) who suggested that words and images can offer a trace of an overall determining set-up if they are torn from their obviousness so they become phantasmagoric figures. The key phantasmagoric figure we identify here is that of the financial institution as timeless, immortal and unchanging; a coherent and autonomous entity amongst other actors. This notion of uniqueness belies the commonality of thinking which precipitated the global financial crisis as well as the limited capacity for control of financial institutions in relation to market events. It also functions as a powerful naturalizing force, making it hard to question certain aspects of the recent period of ?capitalism in crisis?
Risk factors for Hodgkin's disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents
A UK population-based case–control study of Hodgkin's disease (HD) in young adults (16–24 years) included 118 cases and 237 controls matched on year of birth, gender and county of residence. The majority (103) of the cases were classified by Epstein–Barr virus (EBV) status (EBV present in Reed–Stenberg cells), with 19 being EBV-positive. Analyses using conditional logistic regression are presented of subject reports of prior infectious disease (infectious mononucleosis (IM), chicken pox, measles, mumps, pertussis and rubella). In these analyses HD cases are compared with matched controls, EBV-positive cases and EBV-negative cases are compared separately with their controls and formal tests of differences of association by EBV status are applied. A prior history of IM was positively associated with HD (odds ratio (OR) = 2.43, 95% confidence interval (CI) = 1.10–5.33) and with EBV-positive HD (OR = 9.16, 95% CI = 1.07–78.31) and the difference between EBV-positive and EBV-negative HD was statistically significant (P = 0.013). The remaining infectious illnesses (combined) were negatively associated with HD, EBV-positive HD and EBV-negative HD (in the total series, for ≥2 episodes compared with ≤1, OR = 0.45, 95% CI = 0.25–0.83). These results support previous evidence that early exposure to infection protects against HD and that IM increases subsequent risk; the comparisons of EBV-positive and EBV-negative HD are new and generate hypotheses for further study. © 2000 Cancer ResearchCampaig
Emergent Spin-Filter at the interface between Ferromagnetic and Insulating Layered Oxides
We report a strong effect of interface-induced magnetization on the transport
properties of magnetic tunnel junctions consisting of ferromagnetic manganite
LaCaMnO and insulating cuprate PrBaCuO.
Contrary to the typically observed steady increase of the tunnel
magnetoresistance with decreasing temperature, this system exhibits a sudden
anomalous decrease at low temperatures. Interestingly, this anomalous behavior
can be attributed to the competition between the positive spin polarization of
the manganite contacts and the negative spin-filter effect from the
interface-induced Cu magnetization.Comment: 5 pages, 4 figures, with supplemental materials (2 figures). Physical
Review Letters, in pres
Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration
The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager
that observes the solar corona with unprecedentedly high angular resolution
(consistent with its 1" pixel size). XRT has nine X-ray analysis filters with
different temperature responses. One of the most significant scientific
features of this telescope is its capability of diagnosing coronal temperatures
from less than 1 MK to more than 10 MK, which has never been accomplished
before. To make full use of this capability, accurate calibration of the
coronal temperature response of XRT is indispensable and is presented in this
article. The effect of on-orbit contamination is also taken into account in the
calibration. On the basis of our calibration results, we review the
coronal-temperature-diagnostic capability of XRT
Demagnetization Protocols for Frustrated Interacting Nanomagnet Arrays
We report a study of demagnetization protocols for frustrated arrays of
interacting single domain permalloy nanomagnets by rotating the arrays in a
changing magnetic field. The most effective demagnetization is achieved by not
only stepping the field strength down while the sample is rotating, but by
combining each field step with an alternation in the field direction. By
contrast, linearly decreasing the field strength or stepping the field down
without alternating the field direction leaves the arrays with a larger
remanent magnetic moment. These results suggest that non-monotonic variations
in field magnitude around and below the coercive field are important for the
demagnetization process.Comment: 12 pages, 4 figure
- …