1,083 research outputs found

    Quantitative analysis of woodpecker habitat using high-resolution airborne LiDAR estimates of forest structure and composition

    Get PDF
    Light detection and ranging (LiDAR) technology has the potential to radically alter theway researchers and managers collect data onwildlife–habitat relationships. To date, the technology has fostered several novel approaches to characterizing avian habitat, but has been limited by the lack of detailed LiDAR-habitat attributes relevant to species across a continuum of spatial grain sizes and habitat requirements. We demonstrate a novel three-step approach for using LiDAR data to evaluate habitat based on multiple habitat attributes and accounting for their influence at multiple grain sizes using federally endangered red-cockaded woodpecker (RCW; Picoides borealis) foraging habitat data fromthe Savannah River Site (SRS) in South Carolina, USA. First,we used high density LiDAR data (10 returns/m2) to predict detailed forest attributes at 20-mresolution across the entire SRS using a complementary application of nonlinear seemingly unrelated regression andmultiple linear regressionmodels. Next,we expanded on previous applications of LiDAR by constructing 95% joint prediction confidence intervals to quantify prediction error at various spatial aggregations and habitat thresholds to determine a biologically and statistically meaningful grain size. Finally,we used aggregations of 20-m cells and associated confidence interval boundaries to demonstrate a newapproach to produce maps of RCWforaging habitat conditions based on the guidelines described in the species\u27 recovery plan. Predictive power (R2) of regression models developed to populate raster layers ranged from 0.34 to 0.81, and prediction error decreased as aggregate size increased, but minimal reductions in prediction error were observed beyond 0.64-ha (4 × 4 20-m cells) aggregates. Mapping habitat quality while accounting for prediction error provided a robust method to determine the potential range of habitat conditions and specific attributes that were limiting in terms of the amount of suitable habitat. The sequential steps of our analytical approach provide a useful framework to extract detailed and reliable habitat attributes for a forest-dwelling habitat specialist, broadening the potential to apply LiDAR in conservation and management of wildlife populations. A zipped folder of Google maps is attached below as a related file

    Quantitative analysis of woodpecker habitat using high-resolution airborne LiDAR estimates of forest structure and composition

    Get PDF
    Light detection and ranging (LiDAR) technology has the potential to radically alter theway researchers and managers collect data onwildlife–habitat relationships. To date, the technology has fostered several novel approaches to characterizing avian habitat, but has been limited by the lack of detailed LiDAR-habitat attributes relevant to species across a continuum of spatial grain sizes and habitat requirements. We demonstrate a novel three-step approach for using LiDAR data to evaluate habitat based on multiple habitat attributes and accounting for their influence at multiple grain sizes using federally endangered red-cockaded woodpecker (RCW; Picoides borealis) foraging habitat data fromthe Savannah River Site (SRS) in South Carolina, USA. First,we used high density LiDAR data (10 returns/m2) to predict detailed forest attributes at 20-mresolution across the entire SRS using a complementary application of nonlinear seemingly unrelated regression andmultiple linear regressionmodels. Next,we expanded on previous applications of LiDAR by constructing 95% joint prediction confidence intervals to quantify prediction error at various spatial aggregations and habitat thresholds to determine a biologically and statistically meaningful grain size. Finally,we used aggregations of 20-m cells and associated confidence interval boundaries to demonstrate a newapproach to produce maps of RCWforaging habitat conditions based on the guidelines described in the species\u27 recovery plan. Predictive power (R2) of regression models developed to populate raster layers ranged from 0.34 to 0.81, and prediction error decreased as aggregate size increased, but minimal reductions in prediction error were observed beyond 0.64-ha (4 × 4 20-m cells) aggregates. Mapping habitat quality while accounting for prediction error provided a robust method to determine the potential range of habitat conditions and specific attributes that were limiting in terms of the amount of suitable habitat. The sequential steps of our analytical approach provide a useful framework to extract detailed and reliable habitat attributes for a forest-dwelling habitat specialist, broadening the potential to apply LiDAR in conservation and management of wildlife populations. A zipped folder of Google maps is attached below as a related file

    PhD from the University of South Carolina. He has published research in the

    Get PDF
    Abstract: The worldwide elderly population continues to grow, in terms of raw numbers as well as their use of computers and the internet. These facts notwithstanding, it appears that vendors of information technology products, both hardware and software, have largely ignored seniors. Research has shown that these 'silver surfers' are one of that fastest-growing user groups online and, furthermore, have more disposable income than any other segment of modern society. This paper investigates elderly computer and internet usage by incorporating the results of three separate research streams that have reported on this topic. Implications for both practice and research are presented

    Parton energy loss limits and shadowing in Drell-Yan dimuon production

    Get PDF
    A precise measurement of the ratios of the Drell-Yan cross section per nucleon for an 800 GeV/c proton beam incident on Be, Fe and W targets is reported. The behavior of the Drell-Yan ratios at small target parton momentum fraction is well described by an existing fit to the shadowing observed in deep-inelastic scattering. The cross section ratios as a function of the incident parton momentum fraction set tight limits on the energy loss of quarks passing through a cold nucleus

    Massive Lepton Pairs as a Prompt Photon Surrogate

    Get PDF
    We discuss the transverse momentum distribution for the production of massive lepton-pairs in hadron reactions at fixed target and collider energies within the context of next-to-leading order perturbative quantum chromodynamics. For values of the transverse momentum QTQ_T greater than the pair mass QQ, QT>QQ_T > Q, we show that the differential cross section is dominated by subprocesses initiated by incident gluons. Massive lepton-pair differential cross sections are an advantageous source of constraints on the gluon density, free from the experimental and theoretical complications of photon isolation that beset studies of prompt photon production. We compare calculations with data and provide predictions for the differential cross section as a function of QTQ_T in proton-antiproton reactions at center-of-mass energies of 1.8 TeV, and in proton-nucleon reactions at fixed target and LHC energies.Comment: 36 pages, RevTeX, including 16 ps files of figures; minor changes in wording; one reference added. Version to appear in Phys Rev

    The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics

    Full text link
    For low density gases the validity of the Boltzmann transport equation is well established. The central object is the one-particle distribution function, ff, which in the Boltzmann-Grad limit satisfies the Boltzmann equation. Grad and, much refined, Cercignani argue for the existence of this limit on the basis of the BBGKY hierarchy for hard spheres. At least for a short kinetic time span, the argument can be made mathematically precise following the seminal work of Lanford. In this article a corresponding programme is undertaken for weakly nonlinear, both discrete and continuum, wave equations. Our working example is the harmonic lattice with a weakly nonquadratic on-site potential. We argue that the role of the Boltzmann ff-function is taken over by the Wigner function, which is a very convenient device to filter the slow degrees of freedom. The Wigner function, so to speak, labels locally the covariances of dynamically almost stationary measures. One route to the phonon Boltzmann equation is a Gaussian decoupling, which is based on the fact that the purely harmonic dynamics has very good mixing properties. As a further approach the expansion in terms of Feynman diagrams is outlined. Both methods are extended to the quantized version of the weakly nonlinear wave equation. The resulting phonon Boltzmann equation has been hardly studied on a rigorous level. As one novel contribution we establish that the spatially homogeneous stationary solutions are precisely the thermal Wigner functions. For three phonon processes such a result requires extra conditions on the dispersion law. We also outline the reasoning leading to Fourier's law for heat conduction.Comment: special issue on "Kinetic Theory", Journal of Statistical Physics, improved versio

    Measurement of the Light Antiquark Flavor Asymmetry in the Nucleon Sea

    Get PDF
    A precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets is reported. Over 140,000 Drell-Yan muon pairs with dimuon mass M_{mu+ mu-} >= 4.5 GeV/c^2 were recorded. From these data, the ratio of anti-down (dbar) to anti-up (ubar) quark distributions in the proton sea is determined over a wide range in Bjorken-x. A strong x dependence is observed in the ratio dbar/ubar, showing substantial enhancement of dbar with respect to ubar for x<0.2. This result is in fair agreement with recent parton distribution parameterizations of the sea. For x>0.2, the observed dbar/ubar ratio is much nearer unity than given by the parameterizations.Comment: REVTeX, to be published in Phys. Rev. Let
    • …
    corecore