6,541 research outputs found

    In vivo nuclear magnetic resonance imaging

    Get PDF
    A number of physiological changes have been demonstrated in bone, muscle and blood after exposure of humans and animals to microgravity. Determining mechanisms and the development of effective countermeasures for long duration space missions is an important NASA goal. The advent of tomographic nuclear magnetic resonance imaging (NMR or MRI) gives NASA a way to greatly extend early studies of this phenomena in ways not previously possible; NMR is also noninvasive and safe. NMR provides both superb anatomical images for volume assessments of individual organs and quantification of chemical/physical changes induced in the examined tissues. The feasibility of NMR as a tool for human physiological research as it is affected by microgravity is demonstrated. The animal studies employed the rear limb suspended rat as a model of mucle atrophy that results from microgravity. And bedrest of normal male subjects was used to simulate the effects of microgravity on bone and muscle

    Numerical study of solitary wave attenuation in a fragmented ice sheet

    Get PDF
    A numerical model for direct phase-resolved simulation of nonlinear ocean waves propagating through fragmented sea ice is proposed. In view are applications to wave propagation and attenuation across the marginal ice zone. This model solves the full equations for nonlinear potential flow coupled with a nonlinear thin-plate formulation for the ice cover. A key new contribution is to modeling fragmented sea ice, which is accomplished by allowing the coefficient of flexural rigidity to vary spatially so that distributions of ice floes can be directly specified in the physical domain. Two-dimensional simulations are performed to examine the attenuation of solitary waves by scattering through an irregular array of ice floes. Two different measures based on the wave profile are used to quantify its attenuation over time for various floe configurations. Slow (near linear) or fast (exponential-like) decay is observed depending on such parameters as incident wave height, ice concentration and ice fragmentation

    Dilatonic Black Holes, Naked Singularities and Strings

    Full text link
    We extend a previous calculation which treated Schwarschild black hole horizons as quantum mechanical objects to the case of a charged, dilaton black hole. We show that for a unique value of the dilaton parameter `a', which is determined by the condition of unitarity of the S matrix, black holes transform at the extremal limit into strings.Comment: 8 pages, REVTE

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure

    Gauge Formulation of the Spinning Black Hole in (2+1)-Dimensional Anti-de Sitter Space

    Get PDF
    We compute the group element of SO(2,2) associated with the spinning black hole found by Ba\~nados, Teitelboim and Zanelli in (2+1)-dimensional anti-de Sitter space-time. We show that their metric is built with SO(2,2) gauge invariant quantities and satisfies Einstein's equations with negative cosmological constant everywhere except at r=0r=0. Moreover, although the metric is singular on the horizons, the group element is continuous and possesses a kink there.Comment: 10 page

    APOLLO: the Apache Point Observatory Lunar Laser-ranging Operation: Instrument Description and First Detections

    Full text link
    A next-generation lunar laser ranging apparatus using the 3.5 m telescope at the Apache Point Observatory in southern New Mexico has begun science operation. APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) has achieved one-millimeter range precision to the moon which should lead to approximately one-order-of-magnitude improvements in the precision of several tests of fundamental properties of gravity. We briefly motivate the scientific goals, and then give a detailed discussion of the APOLLO instrumentation.Comment: 37 pages; 10 figures; 1 table: accepted for publication in PAS

    Bosonic D-branes at finite temperature with an external field

    Get PDF
    Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T≠0T\neq 0 for bosonic open strings with a constant gauge field FabF_{ab} coupled to the boundary. The construction is done in the framework of thermo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states heve the interpretation of DpDp-brane at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a DpDp-brane state is computed and analysed. It is interpreted as the entropy of the DpDp-brane at finite temperature.Comment: 21 pages, Latex, revised version with minor corrections and references added, to be published in Phys. Rev.

    Voltammetry of (E)-l-Phenyl-2-Nitro-l-Propene in N,N-Dimethyiformamide Solutions

    Get PDF
    ABSTRACT The electrode reduction mechanism of (E)=phenyl-2-nitro-l-propene (PNP) in N,N-dimethylformamide (DMF) has been studied by polarographic, cyclic voltammetric, and rotating disk techniques. The compound is reduced in two polarographic steps in DMF and DMF-water solutions. Data taken at potentials of the first polarographic plateau suggest that the compound is reduced to a product via a mechanism involving coupling of the ion radicals of the precursor. The rate of the coupling reaction has been studied as a function of concentration of the PNP and water content of the solvent. Oscilloscopic recording of rapid cyclic voltammetry experiments demonstrate that the second polarographic step represents a two-electron reduction of the parent compound, PNP

    Two-point phase correlations of a one-dimensional bosonic Josephson junction

    Full text link
    We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows to measure the coupling strength and temperature and hence a full characterization of the system
    • …
    corecore