504 research outputs found

    Sound shield

    Get PDF
    An improved test section for a supersonic or hypersonic wind tunnel is disclosed wherein the model tested is shielded from the noise normally radiated by the turbulent tunnel wall boundary layer. A vacuum plenum surrounds spaced rod elements making up the test chamber to extract some of the boundary layer as formed along the rod elements during a test to thereby delay the tendency of the rod boundary layers to become turbulent. Novel rod construction involves bending each rod slightly prior to machining the bent area to provide a flat segment on each rod for connection with the flat entrance fairing. Rods and fairing are secured to provide a test chamber incline on the order of 1 deg outward from the noise shield centerline to produce up to 65% reduction of the root mean square (rms) pressure over previously employed wind tunnel test sections at equivalent Reynolds numbers

    The effects of wall surface defects on boundary-layer transition in quiet and noisy supersonic flow

    Get PDF
    The design of supersonic vehicles with laminar flow control and vehicles such as the Space Shuttle requires information on allowable transition tolerances to fabrication defects such as discrete surface roughness and waviness. A relatively large data base on the effects of discrete roughness on transition exists for subsonic and supersonic speeds. The existing supersonic wind tunnel transition data are contaminated by wind tunnel noise emanating from the turbulent boundary layers on the nozzle walls. Roughness and waviness transition data obtained in a quiet Mach 3.5 supersonic wind tunnel are compared with those obtained in conventional noisy flows

    Experimental and theoretical investigation of boundary-layer instability mechanisms on a swept leading edge at Mach 3.5

    Get PDF
    A brief outline of the experimental and theoretical investigation of boundary layer instability mechanisms on a swept leading edge at Mach 3.5 is presented. Transition is affected by wind tunnel noise only when roughness is present. Local bar-R sub * Reynolds number and k/eta sub * are useful correlation parameters for a wide range of free stream Mach numbers. Stability theory is in good agreement with the experimental cross flow vortex wavelength. These conclusions are briefly discussed

    Noise reduction in a Mach 5 wind tunnel with a rectangular rod-wall sound shield

    Get PDF
    A rod wall sound shield was tested over a range of Reynolds numbers of 0.5 x 10 to the 7th power to 8.0 x 10 to the 7th power per meter. The model consisted of a rectangular array of longitudinal rods with boundary-layer suction through gaps between the rods. Suitable measurement techniques were used to determine properties of the flow and acoustic disturbance in the shield and transition in the rod boundary layers. Measurements indicated that for a Reynolds number of 1.5 x 10 to the 9th power the noise in the shielded region was significantly reduced, but only when the flow is mostly laminar on the rods. Actual nozzle input noise measured on the nozzle centerline before reflection at the shield walls was attenuated only slightly even when the rod boundary layer were laminar. At a lower Reynolds number, nozzle input noise at noise levels in the shield were still too high for application to a quiet tunnel. At Reynolds numbers above 2.0 x 10 the the 7th power per meter, measured noise levels were generally higher than nozzle input levels, probably due to transition in the rod boundary layers. The small attenuation of nozzle input noise at intermediate Reynolds numbers for laminar rod layers at the acoustic origins is apparently due to high frequencies of noise

    Correlations of supersonic boundary-layer transition on cones including effects of large axial variations in wind-tunnel noise

    Get PDF
    Transition data on sharp tip cones in two pilot low disturbance wind tunnels at Mach numbers of 3.5 and 5 were correlated in terms of noise parameters with data from several conventional wind tunnels and with data from supersonic flight tests on a transition cone. The noise parameters were developed to account for the large axial variations of the free stream noise and the very high frequency noise spectra that occurred in the low disturbance tunnels for some test conditions. The noise could be varied in these tunnels from high levels, approaching those in conventional tunnels, to extremely low levels. The correlations indicated that transition in the low disturbance tunnels was dominated by the local stream noise that was incident on the cone boundary layer unstream of the neutral stability point. The correlation results also suggested that high frequency components of the low disturbance tunnel noise spectra had significant effects on transition when the noise was incident on the boundary layer both upstream and downstream of the neutral stability point

    Free-stream noise and transition measurements on a cone in a Mach 3.5 pilot low-disturbance tunnel

    Get PDF
    A small scale Mach 3.5 wind tunnel incorporating certain novel design features and intended for boundary-layer-transition research has been tested. The free stream noise intensities and spectral distributions were determined throughout the test section for several values of unit Reynolds number and for nozzle boundary layer bleed on and off. The boundary layer transition location on a slender cone and the response of this to changes in the noise environment were determined. Root mean square free stream noise levels ranged from less than one tenth up to values approaching those for conventional nozzles, with the lowest values prevailing at upstream locations within the nozzle. For low noise conditions, cone transition Reynolds numbers were in the range of those for free flight; whereas for high noise conditions, they were in the range of those in conventional tunnels

    SPATIOTEMPORAL VARIATIONIN GRASSLAND BIOMASS AND FORAGE QUALITY ACROSS THE UPPER YELLOWSTONE RIVER BASIN

    Get PDF
    Spatial and temporal heterogeneity in the abundance of high quality forage is known to play an important role in migratory ungulate ecology. While many studies have documented how variations in the timing of start of growth and land use affect the availability of high quality forage across temperate landscapes, few studies have quantified how the abundance of high quality forage varies across these gradients. In this study we quantified how aboveground biomass, crude protein, and digestibility varied throughout the growing season in (1) grasslands that start growth early, mid, and late in the season and (2) in irrigated agriculture, private grasslands, and public grasslands and then used these estimates to (3)assess how the seasonal abundance of high quality forage differed in these start of season and land use classes in the Upper Yellowstone River Basin. We found that grasslands that start growth late in the season had up to 150% greater aboveground biomass, 20% greater crude protein, and 15% greater digestibility at its seasonal peak than grasslands that start growth mid and early in the season. Irrigated agriculture had up to 500% greater aboveground biomass, 90% greater crude protein, and 10% greater digestibility at its seasonal peak than private and public grasslands. Overall, the abundance of high quality forage was greater in the late start of season and irrigated agriculture grasslands. Understanding these landscape-scale variations in the abundance of high quality forage may provide important information for migratory ungulate research and management

    Effects of a modified leading edge on noise and boundary-layer transition in a rod-wall sound shield at Mach 5

    Get PDF
    A version of a rod wall sound shield was tested in the Mach 5 pilot quiet tunnel over a range of unit Reynolds numbers from 10 to 35 million per meter. The model was modified by inclining the leading edge plates to produce an initial 2 deg expansion to ascertain the sensitivity of boundary layer transition to leading edge disturbances. Rod surface pitot pressures, mean free stream pitot pressures, and static pressures on the rods and plenum walls were measured. Hot-wire measurements were also made in the model and nozzle free stream at a unit Reynolds number of 15 million per meter. The surface pitot pressures indicated that transition was much farther forward than for the previous tests due to the leading edge modification and minor fabrication flaws in the model. Early boundary layer transition on the rods was confirmed by hot-wire measurements which showed much higher noise levels in the free stream shield flow when compared with results from previous tests. Mean pitot pressure surveys within the shielded region inside the model indicated that there was an overexpansion and recompression that would limit the streamwise length of undisturbed flow to about 13 cm along the centerline

    Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data

    Get PDF
    The Eurasian badger ( Meles meles ) is a facultatively social carnivore that shows only rudimentary co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence and limited genetic data have suggested that more than one female may breed in a social group. We combine pregnancy detection by ultrasound and microsatellite locus scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to demonstrate that multiple females reproduce within a social group. We found that at least three of seven potential mothers reproduced in a group that contained 11 reproductive age females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger

    Energy cost and return for hunting in African wild dogs and Cheetahs

    Get PDF
    African wild dogs (Lycaon pictus) are reported to hunt with energetically costly long chase distances. We used high-resolution GPS and inertial technology to record 1,119 high-speed chases of all members of a pack of six adult African wild dogs in northern Botswana. Dogs performed multiple short, high-speed, mostly unsuccessful chases to capture prey, while cheetahs (Acinonyx jubatus) undertook even shorter, higher-speed hunts. We used an energy balance model to show that the energy return from group hunting and feeding substantially outweighs the cost of multiple short chases, which indicates that African wild dogs are more energetically robust than previously believed. Comparison with cheetah illustrates the trade-off between sheer athleticism and high individual kill rate characteristic of cheetahs, and the energetic robustness of frequent opportunistic group hunting and feeding by African wild dogs
    • …
    corecore