29,090 research outputs found

    Quantum Fermion Hair

    Full text link
    It is shown that the Dirac operator in the background of a magnetic %Reissner-Nordstr\"om black hole and a Euclidean vortex possesses normalizable zero modes in theories containing superconducting cosmic strings. One consequence of these zero modes is the presence of a fermion condensate around magnetically charged black holes which violates global quantum numbers.Comment: 16pp (harvmac (l)) and 2 figs.(not included

    Double-averaged velocity profiles over fixed dune shapes

    Get PDF
    Peer reviewedPublisher PD

    Dilution jet mixing program, phase 3

    Get PDF
    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes

    Diagrammatic perturbation theory and the pseudogap

    Full text link
    We study a model of quasiparticles on a two-dimensional square lattice coupled to Gaussian distributed dynamical fields. The model describes quasiparticles coupled to spin or charge fluctuations and is solved by a Monte Carlo sampling of the molecular field distributions. The non-perturbative solution is compared to various approximations based on diagrammatic perturbation theory. When the molecular field correlations are sufficiently weak, the diagrammatic calculations capture the qualitative aspects of the quasiparticle spectrum. For a range of model parameters near the magnetic boundary, we find that the quasiparticle spectrum is qualitatively different from that of a Fermi liquid in that it shows a double peak structure, and that the diagrammatic approximations we consider fail to reproduce, even qualitatively, the results of the Monte Carlo calculations. This suggests that the pseudogap induced by a coupling to antiferromagnetic fluctuations and the spin-splitting of the quasiparticle peak induced by a coupling to ferromagnetic spin-fluctuations lie beyond diagrammatic perturbation theory

    High Temperature Superfluid and Feshbach Resonance

    Full text link
    We study an effective field theory describing cold fermionic atoms near a Feshbach resonance. The theory gives a unique description of the dynamics in the limit that the energy of the Feshbach resonance is tuned to be twice that of the Fermi surface. We show that in this limit the zero temperature superfluid condensate is of order the Fermi energy, and obtain a critical temperature TC0.43TFT_C \simeq 0.43 T_FComment: 9 pages, 3 figures, RevTe

    Forecasting Equicorrelation

    Get PDF
    We study the out-of-sample forecasting performance of several time-series models of equicorrelation, which is the average pairwise correlation between a number of assets. Building on the existing Dynamic Conditional Correlation and Linear Dynamic Equicorrelation models, we propose a model that uses proxies for equicorrelation based on high-frequency intraday data, and the level of equicorrelation implied by options prices. Using state-of-the-art statistical evaluation technology, we find that the use of both realized and implied equicorrelations outperform models that use daily data alone. However, the out-of-sample forecasting benefits of implied equicorrelation disappear when used in conjunction with the realized measures.Equicorrelation, Implied Correlation, Multivariate GARCH, DCC

    Naturalness of the Coleman-Glashow Mass Relation in the 1/N_c Expansion: an Update

    Get PDF
    A new measurement of the Xi^0 mass verifies the accuracy of the Coleman-Glashow relation at the level predicted by the 1/N_c expansion. Values for other baryon isospin mass splittings are updated, and continue to agree with the 1/N_c hierarchy.Comment: 6 pages, revte

    Rotating Boson Stars in 5 Dimensions

    Full text link
    We study rotating boson stars in five spacetime dimensions. The boson fields consist of a complex doublet scalar field. Considering boson stars rotating in two orthogonal planes with both angular momenta of equal magnitude, a special ansatz for the boson field and the metric allows for solutions with nontrivial dependence on the radial coordinate only. The charge of the scalar field equals the sum of the angular momenta. The rotating boson stars are globally regular and asymptotically flat. For our choice of a sixtic potential the rotating boson star solutions possess a flat spacetime limit. We study the solutions in flat and curved spacetime.Comment: 17 pages, 6 figure

    One-loop fermionic corrections to the instanton transition in two dimensional chiral Higgs model

    Get PDF
    The one-loop fermionic contribution to the probability of an instanton transition with fermion number violation is calculated in the chiral Abelian Higgs model in 1+1 dimensions, where the fermions have a Yukawa coupling to the scalar field. The dependence of the determinant on fermionic, scalar and vector mass is determined. We show in detail how to renormalize the fermionic determinant in partial wave analysis, which is convenient for computations.Comment: 36 pages, 5 figure

    General Solutions for Tunneling of Scalar Fields with Quartic Potentials in de Sitter Space

    Full text link
    The tunneling rates for scalar fields with quartic potentials in de Sitter space in the limit of no gravitational back reaction are calculated numerically and the results are fitted by analytic formulae.Comment: (Contours in Figure 1 corrected, two-dimensional fitting coefficient corrected, references added.), 16 pages, KUNS 124
    corecore