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1 Introduction

Recently the finance literature has seen renewed interest in the notion of equicorrelation, defined

as the mean of the off-diagonal elements of a correlation matrix. Equicorrelation itself is not

new, having been proposed by Elton and Gruber (1973) as a means to achieve superior portfolio

allocation results due to reduced estimation error. More recently, Pollet and Wilson (2010) develop

a theoretical argument, and provide supporting empirical evidence, that the average correlation of

a stock market index is strongly related to future market returns, whereas stock market variance is

not. Also, Driessen, Maenhout, and Vilkov (2009) show in an empirical exercise that the entire S&P

100 Index variance risk premium can be attributed to the correlation risk premium. Equicorrelation

is also useful for portfolio managers interested in assessing the level of diversification among their

assets. The equicorrelation of a portfolio is the only scalar measure we are aware of that summarises

the degree of interdependence within a portfolio and hence its diversification benefits. Forecasts of

equicorrelation may then provide portfolio managers with a simple guide to the interrelationships

between their portfolio constituents which is more readily interpretable than forecasting each of

the potentially numerous individual pairwise correlations.

The equicorrelation implied by option prices is also important. The return on a strategy known

as dispersion trading, in which one goes long an option on a basket of assets and short options on

each of the constituents, depends only on correlations after each of the individual options are delta

hedged. It is common to assume that all of these correlations are equal, resulting in the value of

the position depending upon the evolution of the implied equicorrelation (Engle and Kelly, 2008).

Partially motivated by its use in dispersion trading, since July 2009, the Chicago Board of Exchange

(CBOE) has published the Implied Correlation Index, the mean correlation of the S&P 500 Index

for the proceeding 22-trading-days. Therefore, in addition to being used in forming expectations

of market returns, equicorrelation is also of use in popular derivatives trading strategies.

From an econometric perspective, the assumption of equicorrelation imposes structure on prob-

lems that are otherwise intractable. Many multivariate volatility models require the length of the

time-series available to be significantly larger than the number of assets in the portfolio for the

statistical results to be reliable, which is problematic for very large portfolios such as the S&P
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500 Index. In the vast majority of models, the time-span available for estimation is limited to the

shortest lived stock within the portfolio, which is conceivably quite short; for example, even the

very large firm Kraft Inc. has only been a publicly traded firm since mid-2007.

Although we focus on equicorrelation forecasting, there has been significant prior interest in

correlation forecasting more generally and a large range of competing candidate models exist that

may also be applied to equicorrelation forecasting1. While there is a large number of Multivariate

Generalised Autoregressive Conditional Heteroscedasticiy (MGARCH) models, Silvennoinen and

Teräsvirta (2009) note that an “ideal” time-series model of conditional covariance or correlation

matrices faces competing requirements; while the specification must be flexible enough to model

the dynamic structure of variances and covariances, it is also desirable to remain parsimonious for

the purposes of estimation.

The Dynamic Conditional Correlation (DCC) model of Engle (2002), adapted for consistent

estimation by Aielli (2009) in his cDCC model, allows for the forecasting of conditional correlations

with the optimization of just two parameters while still retaining a reasonable degree of flexibility;

it is on this model and variations thereof that we focus for generating our equicorrelation forecasts.

In addition to meeting the criteria of flexibility and parsimony, the cDCC model has become the

benchmark in the correlation forecasting literature and provides a natural starting point to begin

discussing equicorrelation forecasting as the estimation framework for this model leads directly to

that of two recently proposed equicorrelation models.

Motivated by the reasons outlined above, and to circumvent estimation issues that we will

discuss shortly, Engle and Kelly (2008) propose two models of equicorrelation. One of these is

based on the cDCC specification, the Dynamic Equicorrelation model; and the other is the Linear

Dynamic Equicorrelation (LDECO) model. Both of these models are similar in functional form,

but differ in the approach they take to modeling equicorrelation. This results in the LDECO model

possessing additional flexibility as it allows the constituents of the portfolio to change over time,

and even allows the number of portfolio constituents to change. The functional form of these

models also plays an important role in being able to investigate potential avenues for improving

1It is beyond the scope of this paper to provide a thorough review of all of such models, see Bauwens, Laurent,
and Rombouts (2006) and Silvennoinen and Teräsvirta (2009) for a wide ranging overview and Laurent, Rombouts,
and Violante (2010) for an extensive empirical comparison of out-of-sample forecast performance.
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equicorrelation forecasts.

In the univariate volatility forecasting literature, it is now well-known that Realized Volatility

(RV hereafter), which is defined as a sum of squared high-frequency intraday returns, provides

a superior proxy for the latent volatility of an asset relative to the square of daily closing price

returns (see, for example, Andersen, Bollerslev, Christoffersen, and Diebold, 2006). Further, when

added as an exogenous regressor to GARCH models, Blair, Poon, and Taylor (2001) find that the

co-efficient acting on RV is statistically significant, which implies RV has incremental explanatory

power over the more noisy squared daily returns. The use of realized measures of latent variables

has been extended into the multivariate setting by, for example, Barndorff-Nielson, Hansen, Lunde,

and Shephard (2010) and Corsi and Audrino (2007). These papers show that using high-frequency

intraday data provides superior estimates of the level of latent covariance between assets, although

one must be careful about market mircostructure effects. A time-series model for correlation based

on intraday data has been put forth by Corsi and Audrino (2007), who extend the univariate

Heterogeneous Autoregressive (HAR) model for RV to its multivariate analogue, and demonstrate

promising results in the bi-variate setting.

The existing equicorrelation proxy used in the LDECOmodel of Engle and Kelly (2008) is based

upon the daily closing price returns of the portfolio constituents. The success of RV in the univariate

framework, and the promising results for multivariate realized volatility just described motivate

an investigation of whether a realized equicorrelation may be utilized to improve the forecast

performance of the LDECO model. We propose three alternative proxies for equicorrelation that

are based upon intraday data and may be substituted into the LDECO model in place of the daily

returns based measure. This allows us to test whether high-frequency based proxies offer similar

improvement in the equicorrelation setting to their benefit in the univariate volatility context. Two

of these are based on the realized (co)variance technologies while the third is a non-parametric

estimate of equicorrelation, the mean level of Spearman rank correlation.

In the univariate volatility forecasting literature it has also been shown that forecasts gen-

erated from the options market, implied volatility (IV), may contain information incremental to

those based on physical market returns. The standard argument for the including IV is because

options are priced with reference to a future-dated payoff, an efficient options market should in-
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corporate both historical information as well as a forecast of information relevant to the pricing of

the options. Poon and Granger (2003) report that IV based forecasts outperform time-series based

forecasts in the majority of research that they reviewed. While this result is not directly related

to equicorrelation, it does highlight a potential link between options markets and future levels of

correlation.

These findings motivate our study of whether similar advantages may be found in the multivari-

ate setting of conditional equicorrelation forecasting. By making the assumption of equicorrelation

in the options market, it is possible to calculate the level of implied equicorrelation which may

be used as a competitor to measures of equicorrelation based on historical data alone. Similar

to including IV in univariate volatility models, the implied equicorrelation may be added to the

LDECO specification to test for the marginal benefit in forecasting equicorrelation.

To summarize, motivated by prior results in the univariate volatility forecasting literature, we

examine two potential improvements to the LDECO model; the use of realized equicorrelations in

place of a daily returns based estimate, in a similar vein to RV in the univariate volatility literature;

and a forecast of equicorrelation from the options market as an exogenous regressor, in a similar

vein to IV in the univariate volatility literature. The two proposed sets of equicorrelation proxies

may also be combined to analyse whether any improved forecasting ability over LDECO gained

from incorporating IC disappears when one includes the realized equicorrelation.

We generate 22-trading-day ahead forecasts of equicorrelation using ten models that include

existing time-series specifications and the extensions that we propose, which will all be specified

in detail below. To evaluate the forecast performance of these models, we employ the Model

Confidence Set (MCS) methodology of Hansen, Lunde, and Nason (2003, 2010). The MCS has

been used previously in the univariate volatility context by, among others, Becker and Clements

(2008) and in the multivariate setting by Laurent, Rombouts, and Violante (2010). An interesting

result of the latter paper for the current context is that in turbulent times the DECO model, which

is closely linked to the LDECO model employed here, dominates among DCC models, including

those that relax the equicorrelation assumption and even include asymmetry terms.

We find that the proposed models of equicorrelation that include realized and implied corre-
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lation separately both lead to superior in-sample fit and out-of-sample forecast performance over

daily returns based information. While the specification that includes both of the discussed ex-

tensions perhaps unsurprisingly provides the best in-sample fit, for the purposes of out-of-sample

forecasting, the use of realized equicorrelation alone is optimal for the data considered here.

The paper proceeds as follows. Section 2 provides an overview of the nesting framework and

the models considered in this paper. Section 3 describes how forecasts of equicorrelation will be

generated along with how the performance of the competing forecasts will be evaluated. Section

4 details the data, and the various proxies for equicorrelation employed. Section 5 presents and

analyses the results and Section 6 concludes.

2 General Framework and Models Considered

Bollerslev (1990) and Engle and Kelly (2008) show that when modeling multivariate conditional

covariances, it is useful to express the multivariate Gaussian density as

rt|t−1 ∼ N(0,Ht), Ht = DtRtDt, (1)

where Dt is the diagonal matrix of conditional standard deviations and Rt is a conditional corre-

lation matrix. The multivariate Gaussian log-likelihood function is then given by

L = −1

2

T
∑

t=1

(nlog(2π) + log|Ht|+ r′tH
−1
t rt),

= −1

2

T
∑

t=1

(nlog(2π) + 2log|Dt|+ r′tD
−2
t rt − r̃′tr̃t)

−1

2

T
∑

t=1

(log|Rt|+ r̃′tR
−1
t r̃t),

= LV ol(θ) + LCorr(θ,Φ),

(2)

where r̃t are volatility-standardized returns given by the n × 1 vector r̃t = D−1
t rt, and n is the

number of assets under consideration.
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Estimates of the correlation model parameters, Φ, are obtained by maximizing the correlation

component of the likelihood function, LCorr(θ,Φ). Traditional practice is to estimate volatility spe-

cific parameters, θ in a first stage, followed by Φ, which depend on the volatility specific parameters

through the volatility standardized returns. We focus on forecasting equicorrelation and not on

forecasting the univariate volatility of each asset. Hence, while numerous choices exist for maxi-

mizing the LV ol component of the above log-likelihood function, it is of secondary importance here.

We follow Engle and Kelly (2009) and model conditional variances using the GARCH(1,1) model.

This allows us to focus directly on the maximizing the LCorr component of the log-likelihood func-

tion; which is essentially a question of the most appropriate model choice for the evolution of the

conditional correlation matrix, Rt. Further, the in-sample log-likelihood results that are presented

in Section 5.1 consist of comparisons of the LCorr(θ,Φ) component of Equation (2) alone.

The first model for Rt we discuss is the consistent Dynamic Conditional Correlation (DCC)

model of Aielli (2009). This approach is flexible enough to model the dynamic structure over

time, yet is parsimonious in that Φ contains only two parameters to fully describe the evolution of

pairwise correlations. It does require the estimation of n× 3 parameters for each of the univariate

GARCH(1,1) models. Under the cDCC model, the conditional correlation matrix is given by

RcDCC
t = Q̃

− 1

2

t QtQ̃
− 1

2

t , (3)

where Qt has the following dynamics

Qt = Q̄(1− α− β) + αQ̃
1

2

t−1r̃t−1r̃
′
t−1Q̃

1

2

t−1 + βQt−1, (4)

where Q̄ is the unconditional correlation matrix, Q̃t replaces the off-diagonal elements of Qt with

zeros but maintains its principal diagonal2, and the following conditions must hold to ensure sta-

tionarity, α > 0, β > 0, α+ β < 1.

Similar in structure to the univariate GARCH model, the cDCC model allows for an uncon-

ditional correlation matrix, or correlation targeting, as well as an innovation term on the lagged

volatility-standardized residuals, and a persistence term for lagged values of Qt. The cDCC model

2Q̃t = Qt ⊙ I, where I is the n× n identity matrix, and ⊙ denotes the Hadamard product.
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is attractive given its analytical tractability, flexibility, and low number of parameters; however,

for the practical applications for which portfolio managers require solutions, the cDCC model fal-

ters as the optimization process requires finding the inverse and determinant of potentially very

large matrices3. The calculation of these functions must be repeated at each time step for each

iteration of the optimization algorithm, the estimation procedure can then quickly become very

computationally burdensome.

2.1 The Dynamic Equicorrelation Model

To simplify computing the inverse and determinant in the log-likelihood function, Engle and Kelly

(2008) make the simplifying assumption of equicorrelation in proposing an alternative means of

modeling the conditional correlation matrix. At each point in time, it assumed that all off-diagonal

elements of the conditional correlation matrix to the common scalar equicorrelation coefficient ρt.

It is the dynamics of this equicorrelation that is the object of interest. Engle and Kelly (2008)

suggest modeling ρt by using the cDCC specification to generate the conditional correlation matrix

Qt and then taking the mean of its off-diagonal elements. This approach is termed the Dynamic

Equicorrelation (DCC-DECO) model, and the scalar equicorrelation is formally defined by

ρDECO
t =

2

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

qi,j,t√
qi,i,tqj,j,t

, (5)

where qi,j,t is the i, jth element of the matrix Qt from the cDCC model. This scalar equicorrelation

is then used to create the conditional correlation matrix

Rt = (1− ρt)In + ρtJn, (6)

where Jn is the n× n matrix of ones and In is the n-dimensional identity matrix.

The assumption of equicorrelation employed by the DECO model significantly decreases esti-

mation time by allowing for analytical solutions to both the inverse and determinant of the condi-

tional correlation matrix, Rt, to be substituted into the log-likelihood function given in Equation

3While numerical techniques may exist for taking the inverse of a matrix such as Gauss-Jordan elimination, we
are not aware of any such alternatives for computing the determinant of a matrix.
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(2); these are given respectively by Equations (7) and (8) below

R−1
t =

1

1− ρt

(

In − ρt
(1 + [n− 1]ρt)

Jn

)

, (7)

and

|Rt| = (1− ρt)
n−1(1 + [n− 1]ρt), (8)

where ρt is the equicorrelation from Equation (5); the inverse R−1
t exists if and only if ρt 6= 1 and

ρt 6= −1
n−1 , and Rt is positive definite if and only if ρt ∈

(

−1
n−1 , 1

)

.

While this has the advantage of simplifying estimation, it still possesses some drawbacks that

prevent it from being the model of choice here. Again consider the practical perspective of a

portfolio manager, an important limitation of the cDCC, DECO, and MGARCH models in general

is that they are unable to handle changes in portfolio composition or the number of assets in the

portfolio. Consider, for example, the S&P 500 Index, where the portfolio constituents do change

quite frequently.4 Hence, Engle and Kelly (2008) propose a variation of the DECO model that

accommodates changes in portfolio composition: the Linear DECO (LDECO) model, which may

be written generally as

ρt = ω + αXt−1 + βρt−1, (9)

where Xt is a proxy for, or estimate of equicorrelation on day t. Xt serves as the surprise news

about the level of equicorrelation allowing for time-variation, essentially fulfilling the same roll as

do lagged squared returns in the basic GARCH model. In fact the functional form of the LDECO

model is the same as that of the GARCH(1,1) model of univariate volatility; the co-efficient α is the

weight placed on the innovation term Xt−1, and β is the weight to be placed on the persistence term,

ρt−1. This model is quite distinct from the cDCC model. While the DECO model uses individual

elements derived directly from the full correlation matrices Qt generated by the cDCC model, the

LDECO model is an autoregressive form estimated on historical proxies of equicorrelation alone,

no output from the cDCC or any other MGARCH model is required. The specification given in

Equation (9) is quite general since it defines Xt only as a measure of equicorrelation, encompassing

many alternative specifications of past equicorrelation. Hence a natural question is, what is the

4Between June 1st 2010 to June 1st 2011, 11 firms were removed from the Index.
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best choice of the measure Xt?

When initially proposing the LDECO model, Engle and Kelly (2008) note that “key in this

approach is extracting a measurement of the equicorrelation in each time period using a statistic

that is insensitive to the indexing of assets in the return vector” (pp. 13, Engle and Kelly, 2008).

Engle and Kelly (2008) propose a statistic that they argue fulfills this criterion, which may be

substituted into Equation (9) for the generic variable Xt, and is based on the volatility-standardized

daily closing price returns of each of the portfolio constituents,

ut =
[(
∑

i r̃i,t)
2 −

∑

i(r̃
2
i,t)]/n(n− 1)

∑

i(r̃
2
i,t)/n

. (10)

The equicorrelation proxy, ut, can be decomposed into an estimate of the covariance of returns,

the numerator, and an estimate of the variance for all assets, the denominator. As r̃i,t are volatility-

standardized returns they should have unit variance and, therefore, the numerator should be a

correlation estimate. However, the numerator is not technically restricted to lie in the range that

ensures Rt is positive definite, and it lacks robustness to deviations from unity for the conditional

variance estimate (Engle and Kelly, 2008). However, Engle and Kelly (2008) demonstrate that the

denominator of ut standardizes this covariance estimate by an estimate of the common variance;

this ensures that ut lies within the range necessary for positive definiteness of the correlation matrix.

It is here that the first extension to the LDECO model is proposed. It has been demonstrated

in prior research (see, for example, ABCD 2006 and references therein) that realized volatility-

based approaches generally provide superior estimates of latent univariate volatility. Furthermore,

recent work by, among others, Barndorff-Nielsen, Hansen, Lunde, and Shephard (2010), and Corsi

and Audrino (2007) show that in multivariate contexts, using high-frequency intraday data provide

superior estimates of the interrelationships between assets relative to alternatives such as closing

price returns. These findings motivate us to examine whether high-frequency based proxies for

equicorrelation generate superior forecasts relative to the daily returns estimate of Engle and Kelly

(2008).

The argument for using realized correlation in a time-series model is not new. For example,

Corsi and Audrino (2007) use realized correlations in their multivariate Heterogeneous Autore-
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gressive model for conditional correlation matrices. However, to the best of our knowledge this is

the first time realized correlations have been used when modeling equicorrelation. To incorporate

realized equicorrelation in our models we first adapt the existing realized (co)variance technologies

to generate an estimate of the realized equicorrelation. We use three alternative methods, which

are each discussed below.

The first realized estimate of equicorrelation we propose uses the entire covariance matrix.

While there are several ways to estimate realized covariance, we adopt the same approach as used

in Laurent, Rombouts, and Violante (2010) in their empirical study5, one that is based on results

from Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielson and Shephard (2004).

The realized covariance (RCOV) on a given day is calculated as follows. We partition each trading

day, t, into Lt distinct, non-overlapping trading intervals, denoted by lt = 1, ..., Lt, and define the

n-vector of asset returns for the interval lt by rlt,t. The length of each of these lt periods is allowed

to vary such that all of the asset returns for a given period are non-zero, with the restriction that

the minimum window length is 15-minutes6 to minimize the Epps (1979) effect. The varying length

of intervals is reflected in the time subscript notation of Lt, as each day may have a different number

of total trading intervals7. The realized covariance matrix in then defined for a given day as the

5We note for completeness that Laurent, Rombouts, and Violante (2010) compare their results from the above
approach (which is slightly different as they used fixed window lengths of 5 minutes in calculating RCOV rather than
the adaptive window length employed here) with a realized kernel estimator and find qualitatively similar results.
Hence, we don’t resort to kernel-based estimators such that proposed by Barndorff-Nielsen, Hansen, Lunde, and
Shephard (2010). Further, the minimum window length in calculating RCOV was also set at 1-, 5-, and 30-minute
horizons with no qualitative impact on the results.

6The choice of 15 minutes is partially motivated by the results of Sheppard (2006) who finds that a minimum
length of 10 minutes is sufficient to get unbiased estimates of the correlation between constituents of the DJIA. The
choice of 15 minutes rather than 10 is based on it resulting in a whole number of periods within the day.

7Although we allow for varying trading interval length, for the overwhelming majority of cases the trading interval
is indeed 15-minutes. The average length of time for all assets to have non-zero returns is 2.57 minutes, with the
maximum length of time being 108 minutes. This results in the calculation of the RCOV for the most part being
closely aligned with the 15-minute fixed window used in the calculation of univariate realized volatility and Spearman
rank correlations, which are discussed shortly.
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sum of the outer products of the rlt,t vectors,

RCOVt =

Lt
∑

lt=1

rlt,tr
′

lt,t,

τlt,t = min τ, for lt = 1, ..., Lt,

s.t. ri,lt,t 6= 0, ∀i, τlt,t − τlt−1,t ≥ 15,

(11)

where τlt,t is the time of the end of the lt-th period of day t.

Following equation (5), the realized equicorrelation (REC) may be found by taking the mean

of the off-diagonal elements of RCOV

RECt =
2

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

RCOVi,j,t
√

RCOVi,i,tRCOVj,j,t

. (12)

As Equation (12) produces a scalar level of equicorrelation, it may substituted in as the variable

Xt in place of the ut in Equation (9).

An alternative approach to computing realized equicorrelation is to rely solely on the realized

volatilities of each of the assets within an index (portfolio) and the index itself using the portfolio

variance identity. The RV of asset i on day t is given by

RV
(m)
i,t ≡

m
∑

k=1

r2k,t, k = 1, ...,m, (13)

where r2i,k,t is the squared intraday log-return on asset i from period k − 1 to k for each of the m

fixed-length8 periods within day t. After calculating the RV of an index as well as the RVs for each

of the index’s constituents, a realized measure of equicorrelation may be constructed by using the

portfolio variance identity

RVp,t =

n
∑

i=1

w2
iRV 2

i,t + 2

n−1
∑

i=1

n
∑

j=i+1

wiwjRVi,tRVj,tρi,j, (14)

8Based on the research of Hansen and Lunde (2006) and related articles, the RV is calculated based on 15-minute
intervals; 1-, 5-, and 30-minute intervals are also used for robustness with no qualitative effect on the results.
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and making the assumption of equicorrelation; re-arranging yields

DRECt =
RV 2

p,t −
∑n

i=1 w
2
iRV 2

i,t

2
∑n−1

i=1

∑n
j=i+1wiwjRVi,tRVj,t

, (15)

where RVp,t is the RV of the index and wi the weight in that index placed on asset i. This realized

equicorrelation measure is defined as DREC, where the D denotes that it only uses the diagonal

elements of a covariance matrix, i.e., the individual RVs. By using only individual RVs to estimate

equicorrelation, a potential benefit of the DREC measure is that it avoids the Epps effect (Epps,

1979) altogether, in which estimates of covariance may be biased downwards due to asynchronous

trading. This approach gives a scalar equicorrelation that may also be substituted in for the variable

Xt discussed previously.

As well as enabling the use of realized (co)variance technologies, the availability of high-

frequency intraday data allows for a third approach to measuring equicorrelation. As both the

REC and DREC measures are calculated from raw intraday returns, they may be excessively in-

fluenced by large shocks in returns or excess volatility in a small number of the constituent stocks.

A non-parametric approach insensitive to the magnitude of the largest and smallest returns is the

Spearman rank correlation, which examines how the rankings of returns are related throughout the

course of the trading day9. The Spearman rank correlation between two assets i and j, SRi,j, is

calculated from 15-minute log-returns

SRi,j,t = 1− 6
∑m

k=1 d
2
k

m(m− 1)
, (16)

where dk is the difference in rankings of returns for period k for each of the m 15-minute periods

of day t, the time indexing employed for the Spearman rank calculation is identical to the notation

for the calculation of the realized variance. We then construct the Spearman rank equicorrelation

(SREC) as the average of the off-diagonal elements of this matrix of Spearman rank correlations:

SRECt =
2

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

SRi,j,t, (17)

9We thank Andrew Harvey for suggesting this approach.
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In total, we consider three alternative proxies for equicorrelation in addition to the original

measure proposed by Engle and Kelly (2008). Rather than simply using returns based on daily

closing prices we consider three measures that use high-frequency intraday data; REC uses a realized

covariance approach, DREC uses the index and individual asset realized volatilities, and SREC uses

a non-parametric ranking of returns. Recall the functional form we use to model equicorrelation:

ρt = ω + αXt−1 + βρt−1 (Equation (9)), which nests all these models by using each of these four

alternative measures of the equicorrelation Xt−1:

LDECO: ρt = ω + αut−1 + βρt−1,

REC: ρt = ω + αRECt−1 + βρt−1,

DREC: ρt = ω + αDRECt−1 + βρt−1,

SREC: ρt = ω + αSRECt−1 + βρt−1.

(18)

2.2 Incorporating Implied Equicorrelation

In addition to using historical return-based proxies for equicorrelation, we investigate whether

the information from options markets offers forecasting power over and above that contained in

historical returns alone. Our motivation for this extension to LDECO again comes from an appeal

to the univariate volatility literature, in which numerous papers demonstrate the advantages of

implied volatility in generating forecasts; see Poon and Granger (2003), for example, for a review.

Similar to the use of the V IX in the univariate context, it is possible to construct a model-free

measure of implied equicorrelation (IC) from options data; which may be incorporated into the

LDECO model.

It is well known that a model-free estimate of the implied volatility of a stock index that has

options traded on it, e.g., the DJIA, can be constructed, i.e. the V XD10. For each of the constituent

stocks in an index on which options trade, a similar model-free estimate of its IV may be found,

denoted as IVi,t for the implied volatility of asset i. Recalling the portfolio variance identity used in

calculating the DREC earlier, and invoking the assumption of equicorrelation, model-free estimates

10The V XD is the DJIA equivalent of the potentially more well known V IX for the S&P 500 Index; a model-free,
risk-neutral, option implied forecast of the mean annualised volatility of the index over a fixed 22 trading day horizon.
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of index and individual asset IVs may be made used the to form the IC,

ICt =
IV 2

p,t −
∑n

j=1w
2
j IV

2
j,t

2
∑n−1

i=1

∑n
j=i+1wiwjIVi,tIVj,t

, (19)

where IVp,t is the annualised implied 22-day-ahead standard deviation of the index, wi is the

portfolio weight given to asset i, and si is the annualised implied 22-day-ahead standard deviation

of asset i.

Engle and Kelly (2008) calculate the IC for the S&P500 index and show that it closely matches

the fitted equicorrelation from both the cDCC-DECO and LDECO models, although they do not

use the IC directly in model estimation or forecasting. Further, the IC has been used previously

by Castren and Mazzotta (2005) in a bivariate setting of exchange rates and they find that a

combination forecast of IC and an MGARCH model is preferred, these conclusions are based on

the in-sample adjusted R2 only as they do not conduct a forecasting exercise. These results, and the

publishing of IC for the S&P 500 Index by the CBOE11, motivate an investigation of the incremental

information content of the IC relative to the various proposed measures of the equicorrelation, Xt.

Following Blair, Poon and Taylor (2001) who consider the role of the V IX in a univariate

GARCH model of volatility, it is proposed that the LDECO specification be extended to include

IC as an additional variable. This combines the information contained within the historical returns

series of the portfolio constituents with the information implied by the options market,

ρt = ω + αXt−1 + βρt−1 + γICt−1, (20)

where Xt may be any of the previously proposed measures of equicorrelation, which leads to

LDECO-IC: ρt = ω + αut−1 + βρt−1 + γICt−1,

REC-IC: ρt = ω + αRECt−1 + βρt−1 + γICt−1,

DREC-IC: ρt = ω + αDRECt−1 + βρt−1 + γICt−1,

SREC-IC: ρt = ω + αSRECt−1 + βρt−1 + γICt−1,

IC: ρt = ω + γICt−1.

(21)

11Details on the implied equicorrelation published by the Chicago Board of Exchange is available online at the
CBOE S&P 500 Implied Correlation Index micro site (2009).

15



These models retain the useful property of having analytical solutions for the inverse and determi-

nant ofRt as given by Equations (7) and (8) respectively as equicorrelation is assumed in calculating

IC and Equation (20) is a linear combination of two equicorrelation measures. Hence, the proposed

model is easily incorporated into the previously defined general framework in Section 2 and may

be estimated by quasi-maximum likelihood methods by optimising Equation (2). In a fully efficient

options market, the co-efficient on Xt is expected to be statistically indistinguishable from zero

as the historical information should be incorporated by options market participants in generating

their IC forecast.

For any given definition of Xt, the model descriptions in Equation (21) above clearly nest those

in Equation (18); for example, the REC-IC model nests the REC model. A standard likelihood

ratio test of these two models allows for an examination of the improvement in model fit yielded

by the inclusion of the IC, but only for those pairs of models using the same definition of Xt.

Any improvements between non-nested model such as the REC-IC and DREC models may not be

attributable to the IC term and hence standard likelihood ratio test are not applicable, and an

alternative method of comparing these models is required. To compare the in-sample fit of non-

nested models we use the non-nested likelihood ratio test of Vuong (1989). Where two non-nested

models are competing to explain the same variable, ρt in our case, Vuong (1989) demonstrates that

under certain regularity conditions the variable

T−1/2LRT /ξ̂T
D→ N(0, 1), (22)

where LRT = Li
T − Lj

T is the difference in log-likelihood between models i and j, and ξ̂T is the

variance of the likelihood ratio statistic:

ξ̂T =
1

T

T
∑

t=1

[

log
fi(ρt)

fj(ρt)

]2

−
[

1

T

T
∑

t=1

log
fi(ρt)

fj(ρt)

]2

, (23)

and fi(ρt) here is the calculated LCorr component of Equation (2) for model i for each of its fitted

values of ρt.
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3 Forecast Evaluation

We are interested in evaluating the forecasting performance of these various models of equicorrela-

tion. We do this across a range of forecast horizons and use the Model Confidence Set methodology

to compare the statistical performance of the respective forecasts.

3.1 Generating Forecasts

In addition to an in-sample comparison of model performance, we generate multi-step-ahead point

forecasts of equicorrelation up to a 22-day forecast horizon, the horizon over which the IC is

defined. Unlike variance and covariance, however, one cannot aggregate correlation through time

and each point forecast must be evaluated individually, rather than the total 22-day correlation.

So we evaluate the forecasting performance of each of the models for each k-day ahead forecast,

∀k = 1, ..., 22 days.

To generate a multi-period forecast, we assume that Et[Xt+k] ≈ Et[ρt+k], which can then be

used to generate recursive forecasts,

Et[ρt+k] = ω + (α + β)Et[ρt+k−1] + γEt[ICt+k−1]. (24)

Unfortunately we have no a priori guidance as to the dynamics of IC and hence no way to forecast

it, so we assume a simple AR(1) process. Under such dynamics, the multi-period forecast of IC is

given by

Et[ICt+K ] = θK1 ICt + µ(1− θK1 ), (25)

where µ is the drift term in the AR(1) process and θ1 is the co-efficient acting on the lagged value

of ICt. Recursively substituting Equation (24) into Equation (25) leads to the following expression
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for multi-step-ahead forecasts,

ρt+K = ω

[

1− (α+ β)(K−1)

1− α− β

]

+ (α+ β)K−1ρt+1

+ γ

K−2
∑

k=0

(α+ β)K−2−k

[

µ

[

1− θ(k+1)

1− θ

]

+ θ(k+1)ICt

]

.

In discussing potential avenues for forecasting equicorrelation, our focus has been on using al-

ternative historical measures of equicorrelation directly in the estimation procedure; however, there

does exist a natural alternative to this approach. Rather than estimating prior levels of equicor-

relation and forecasting using Equation (9), it is possible to generate forecasts of a more general

covariance matrix without the equicorrelation restriction imposed. One may take the equicorre-

lation forecast as the mean of the off-diagonal elements of this less restricted matrix; that is, the

equicorrelation restriction may be imposed post hoc to the estimation procedure. Even though the

forecast object will still be the level of equicorrelation, we argue this is a more flexible approach in

generating the forecast; each of the correlation pairs is allowed to evolve in a less restricted frame-

work. The chosen model for this alternative approach is the cDCC model of Aielli (2009) given its

benchmark status in the literature; forecasts generated in this fashion will be denoted cDCC.

Finally, we note that each of the models are estimated over a rolling fixed estimation length 12

of 1000-trading-days. After allowing for a 1000-trading-day initial estimation window, 941 out-of-

sample forecasts are generated for the 22-day-ahead horizon; while more forecasts could have been

generated for the shorter forecast horizons, we decided to keep the sample size the same across all

statistical analyses.

3.2 Statistical Evaluation of Forecasts

In order to statistically evaluate the relative forecast performance of the models considered, we

require an estimate of the “true” equicorrelation on each of the days for which point forecasts are

generated in order to gauge their accuracy. We have already argued in favor of realized equicorre-

12Expanding window estimation was also carried out with no qualitative difference in results.
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lation as a superior measure of the daily relationship between assets of interest when constructing

the REC measure for use within the LDECO model and the majority of our results will be dis-

cussed with this measure in mind. However, as a robustness check, we also use the Engle and Kelly

(2008) measure of equicorrelation defined in Equation (10), ut, the diagonal realized equicorrelation

(DREC) defined in Equation (15), and the Spearman rank equicorrelation defined in (16), SREC,

as the “true” equicorrelation values; the results are qualitatively similar across all measures.

We employ the Model Confidence Set (MCS) approach (Hansen, Lunde and Nason; 2003, 2010)

to examine the forecast performance of each of the models considered. A forecast loss measure is

central to the MCS methodology. Although there are many options available, the loss functions we

use are mean-square-error (MSE) and QLIKE,

MSEi
k = (ρt+k − f i

t,k)
2, (26)

QLIKEi
k = log(f i

t,k) +
ρt+k

f i
t,k

, (27)

where f i
t,k, i = 1, . . . ,M are individual forecasts (formed at time t for k-days ahead) obtained from

an initial set of M individual models, and ρt+k is the measure of true equicorrelation.

While these loss functions allow forecasts to be ranked, they give no indication of whether

the top performing model is statistically superior to any of the lower-ranked models. The MCS

approach allows for such conclusions to be drawn. The construction of a MCS is an iterative

procedure that requires sequential testing of equal predictive accuracy (EPA) between competing

forecasts. The procedure begins with a set of M individual forecasts to which tests of EPA are

applied. Any forecast found to be statistically inferior is eliminated leaving M∗ forecasts such

that M∗ ⊂ M. This iterative procedure is repeated until EPA cannot be rejected and hence the

remaining M∗ forecasts are of EPA at a given level of confidence. MCS results are presented in the

form of p-values for an individual forecast being a member of the final MCS, M∗. The p-values

relate to the rejection of the null hypothesis that a forecast is a member of M∗, hence the smaller a

p-value the less likely a forecast is a member of the MCS. We refer the reader to Hansen, Lunde and

Nason (2003, 2010) for technical details regarding the implementation of the MCS methodology.
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4 Data

Our results are based on the DJIA over the period starting on the 1st of November 2001 through

to the 30th of October 2009, giving 1964 observations13. Our data comes from three sources: the

OptionsMetrics IvyDB US database for calculating model-free implied volatilities for individual

stocks, the CBOE for the daily closing values of the V XD index, and ThomsonReuters Tick History

for minute-by-minute intraday prices used in calculating the realized equicorrelation measures.

Similar to the more commonly known V IX for the S&P 500 Index, the V XD is a model-free

22-day-ahead at-the-money implied volatility forecast for the DJIA. To fix ideas, the day t implied

equicorrelation is given by

ICt =
V XD2

t −
∑n

j=1w
2
j,tRV 2

j,t

2
∑n−1

i=1

∑n
j=i+1wi,twj,tRVi,tRVj,t

, (28)

where the weights now have a t subscript to denote that the constituents of the index vary through

time 14.

For comparative purposes, the entire sample of the five equicorrelation proxies used in this

paper are plotted in Figure 1; the ut measure proposed by Engle and Kelly (2008), the implied

equicorrelation, the realized diagonal equicorrelation, the realized equicorrelation and the Spearman

rank equicorrelation.

Figure 1 about here.

From the plot of ut in Panel A of Figure 1, we observe that the measure proposed by Engle and

Kelly (2008) is quite noisy, perhaps more noisy than one would expect of the mean correlation of

thirty of the largest US firms. However, to demonstrate that this measure is still quite persistent,

the centered 44-day-moving-average, the mean equicorrelation of data one month either side of a

given day, is plotted in white.

13We choose the DJIA as we are able to obtain the implied volatilities of each of its constituent stocks for each day
of the sample and are therefore able to calculate the implied equicorrelation with certainty. This is not true of the
S&P 500 Index, for which the CBOE publishes its IC based on an approximation from the largest 50 stocks within
the index, as not all of its constituent stocks have listed options traded.

14Although the DJIA is relatively more stable than, say, the S&P 100, only 17 of the original 30 constituents remain
in the index consistently for our sample period.
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As can be seen in Panel B of Figure 1, IC derived from the options market appears to be

significantly less noisy than any of the alternatives. It also appears to track the realized measures

quite closely, which augurs well for the out-of-sample forecasting exercise given these measures are

used as alternative “true” equicorrelation proxies. Further anecdotal support for the use of IC

in equicorrelation forecasting comes from the fact that the ICt tends to peak in times of market

turmoil; when large indices fall, the majority of assets suffer losses and this is reflected in a high

level of correlation across assets.

Panels C, D and E of Figure 1 plot the realized equicorrelation measures and the Spearman

rank equicorrelation over the sample period. We observe that the measures follow similar dynamics,

as realized diagonal equicorrelation is the least noisy of the three it may possess more power in

distinguishing between the out-of-sample forecast performance of the competing models.

To reinforce the point regarding the relative noisiness of ut, descriptive statistics are provided

for each of the series in Table 1. It can be seen that the ut is extremely noisy, with its standard

deviation of 0.2681 larger than its mean of 0.2631; ut is also weakly correlated with all of the

alternative estimates. The standard deviation of the other four measures are significantly smaller,

all falling between 0.105 and 0.135, and they are more highly correlated with each other. The two

realized equicorrelations DREC and REC, are somewhat different in their means at 0.3556 and

0.2782 respectively, with the standard deviation of the DREC measure slightly smaller, they are

unsurprisingly highly correlated with each other at 0.7237. The mean of IC, at 0.4218, is higher

than all of the other measures and probably reflects a correlation risk premium being priced in

the derivatives market. Finally, we note that estimates of equicorrelation from the physical market

are not highly correlated with the IC from the options market, so there should not be any adverse

effects from multicollinearity by including multiple estimates of equicorrelation.

Table 1 about here.
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5 Results

We know study the performance of these proxies for equicorrelation to fit in-sample the DJIA, and

forecasts the average correlation out-of-sample.

5.1 In-Sample Estimation Results

There are two broad questions we address in this Section. Firstly, of the proposed alternatives,

what is the optimal choice for the equicorrelation measure Xt? Secondly, does the information

contained within IC lead to superior model fit above those models based on historical returns alone?

Addressing these questions will shed light on whether the incremental value from the addition of

IC term is robust to the choice of Xt. This analysis is based on the entire sample available.

To begin addressing the question of the optimal choice for the equicorrelation measure Xt, the

results for the restricted models are presented first. These models exclude the information content

of the IC by enforcing the restriction of γ = 0 in Equation (20); their parameter estimates and

respective LCorr terms from Equation (2) are presented in Panel A of Table 2. We observe that

the best in-sample fit of the restricted models is given by the choice of REC as the equicorrelation

proxy. It generates the highest log-likelihood function value and the associated co-efficient is also

statistically significant at more than three robust standard errors from zero. The worst in-sample fit

is given by the ut proposed by Engle and Kelly (2008), while the relevant co-efficient is statistically

insignificant at approximately 1.5 robust standard errors from zero.

Table 2 about here.

The relative log-likelihood values of the restricted models may be assessed through the Vuong

likelihood ratio test results in Panel A of Table 3. At traditional levels of significance only one

claim may be made: that using the REC measure offers statistically significant improvement over

the ut and DREC definitions of Xt, it cannot be statistically separated from the Spearman rank

equicorrelation measure. No other proposed measure of equicorrelation offer a significant difference

in the LCorr term relative to its competitors.
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Table 3 about here.

By incorporating information contained within IC in relaxing the restriction that γ = 0 in

Equation (20), an interesting pattern emerges from the results presented in Panel B of Table 2.

We observe that none of the estimated coefficients of the proposed proxies for equicorrelation,

Xt, are statistically significant; in each case the standard error is of larger magnitude than the

parameter estimate. This would suggest that the choice of Xt is irrelevant as they all lack significant

explanatory power in this setting. This result is confirmed by the Vuong likelihood ratio test results

presented in Panel B of Table 3. After including IC, none on the values for LCorr are statistically

different from each other. The only specification that is consistently dominated is the specification

using information from the options market alone, ρt = ω + γICt.

Overall, the above discussion demonstrates that the choice for the Xt is important only if IC

is excluded. If IC is included, then the choice for Xt is irrelevant as all of these models will possess

statistically indistinguishable in-sample fits. If the model is based on historical information alone,

then the choice of REC will dominate the ut and DREC proxies, but not SREC. As the relevance of

the choice of Xt is dependent on the inclusion of the IC term, whether IC itself warrants inclusion is

now addressed. In Panel B of Table 2 p-values of standard likelihood ratio tests are reported for the

restriction that γ = 0, in all cases the relevant p-values are smaller than 0.10. This result combined

with insignificant estimates of α, leads us to conclude that the IC subsumes the information content

of all of the alternative proxies of equicorrelation that are based on historical data alone.

In addition, the Vuong likelihood ratio test results in Table 4 reinforce the fact that the inclusion

of the IC term improves model fit. The prior Vuong statistics separately compared the relative

performance of the restricted models given in Equation (18) with the results given in Panel A of

Table 3, while the results presented in Panel B of Table 3 were for unrestricted models given in

Equation(21); both of these sets of results focus solely on the choice of Xt measure. Comparing

the restricted against the unrestricted models via the Vuong likelihood ratio test allows for an

examination of the statistical improvement in model fit offered by the inclusion of the IC. Table

4 compares the log-likelihood values of those models that include the IC term with those that do

not, we find that all of the models which include the IC term dominate those that do not. Even

the ρt = ω + γICt specification outperforms all of the restricted models; each of the calculated
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p-values is less than 0.01, suggesting clear rejection of the null hypothesis that the models have

equal log-likelihood.

Table 4 about here.

These results demonstrate that including IC improves model fit. The unrestricted models all

have insignificant co-efficient estimates for the historical measures of equicorrelation and significant

parameter estimates for the IC term. Further, all of the Vuong likelihood ratio test results suggest

that the including IC leads to significantly improved model fit over models that do not include

information from the options market.

Plots of the fitted equicorrelations, ρt given a range of the candidate models15 are shown in

Figure 2. The plots reinforce the prior results in that the choice of proxy for Xt is irrelevant if the

IC term is included, as the estimates of ρt in Panels B, D, and F are remarkably similar. However,

there are a clear differences in ρt when IC is excluded as seen in Panles A, C and E. The fitted ρt

when ut is used for Xt appear to miss variations in the underlying object of interest, which would

explain its poor performance revealed by earlier results in Table 2.

Figure 2 about here.

To summarise the in-sample results, all of the proposed extensions to the original LDECO

model of Engle and Kelly (2008) yield a higher log-likelihood. However, only the REC proxy

offers statistically significant improvement over the original measure among the restricted models

that do not include information from the options market. If IC is included, then this also results

in a statistically significant improvement over the original Engle and Kelly (2008) specification.

However, it also means the choice of equicorrelation proxy is rendered redundant as none of the

unrestricted models can be separated by the Vuong likelihood ratio test. Overall, these results

are consistent with the univariate volatility forecasting literature. Realized proxies for volatility

offer improvements over estimates of volatility based on closing price returns, and option based

information is beneficial.
15The univariate model of IC is excluded as it is obvious from the results in Table 2 that a persistence term is highly

significant. Further, models incorporating the SREC measure are also excluded as they are qualitatively similar to
the REC models.
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5.2 Out-of-sample Forecast Results

The results from the MCS procedure are presented in Table 5 with the forecast performance eval-

uated using the Mean Square Error loss function under the range statistic using the REC as the

measure of “true” equicorrelation16. This table presents a summary of the p-values of rejecting

the null hypothesis that the relevant model is not a member of the MCS; the higher the p-value,

the more likely that the relevant specification belongs in the set of statistically superior models.

The statistics are summarized by a spectrum of “ticks” reflecting the probability of a model be-

ing included in the MCS; a blank entry indicates a p-value between 0.00 and 0.05, X indicates a

p-value between 0.05 and 0.10, XX between 0.10 and 0.20, and XXX greater than 0.20. From the

summarized results in Table 5, two main observations may be made.

Overall, the REC proxy for equicorrelation generates the best out-of-sample forecasts (under

both loss functions, test statistics and all measures of “true” equicorrelation; however) at short

forecast horizons. As the forecast horizon increases, it becomes increasingly difficult to statistically

distinguish between the competing models. Beyond the 5 day forecast horizon, the only models to

be excluded under any loss function, test statistic or equicorrelation proxy are the cDCC model,

and those models that use either the ut or DREC; that is, those models that use either daily data

or the diagonal realized equicorrelation17.

Note that in the robustness check of using four measures of “true” equicorrelation, there is

one exception to the REC specification providing the best forecast. In results not reported here,

the DREC specification provides the best forecast under the DREC target for equicorrelation, at

the one-day horizon under both loss functions and test statistics. For all other loss functions, tests

statistics, time horizons, and measures of equicorrelation18 the REC measure provides the superior

out-of-sample forecast, and we therefore believe that our finding that REC is the superior measure

is a robust result.

16Results are qualitatively similar for both the QLIKE and MSE loss functions under both the range and semi-
quadratic test statistics. Further, the use of the alternative measures of “true” equicorrelation, the DREC, SREC
and ut measures, do not qualitatively alter the results. For brevity’s sake, only one set of representative results are
presented here, with the remainder available from the authors upon request.

17Recall that the cDCC model uses daily closing price volatility-standardized returns in its estimation.
18These results are not presented to conserve space, but are available from the authors upon request.
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It is important to note from Table 5 that those models that rely on daily closing price returns

are typically the worst performing. Both the original LDECO model using ut, and cDCC, generally

yield inferior forecasts to those specifications that use realized and implied equicorrelation. In fact,

a simple linear regression on IC typically yields superior forecasts to those models solely using daily

returns. These out-of-sample forecasting results confirm the in-sample estimation results, as well

as corroborating a larger amount of the univariate literature that shows that realized estimates of

latent volatility are superior to those based on daily closing price returns.

However, when examining those models that incorporate realized measures of equicorrelation

(DREC, REC or SREC), forecast performance generally deteriorates over the longer term upon the

inclusion of the IC measure. This may reflect the fact that the chosen AR(1) specification for IC

does not adequately match its true dynamics. However, as REC dominates at all time horizons,

even an improved forecasting method for IC would not reverse the rankings of the models. Perhaps

if the REC-IC model dominated for shorter horizons before the REC specification became the

superior forecast, a more thorough investigation of the dynamics of IC would be warranted, but

this is not believed to be the case here. In either scenario, the superior in-sample fit by including

IC is not replicated in the out-of-sample forecasting exercise, where information from the physical

market alone generates the best forecasts.

6 Conclusions

We have analyzed the in-sample fit and out-of-sample forecasting performance of ten candidate

models of equicorrelation after adapting the LDECO model to utilize realized and implied proxies

for equicorrelation. We find that the proxy for equicorrelation based on realized covariance tech-

nology provided superior in-sample fit to all of the alternative historical estimates considered. This

difference is statistically significant in the restricted models where no option implied information

was included, but the inclusion of implied equicorrelation rendered the choice of realized proxy irrel-

evant. In fact, all of the historical based estimates of equicorrelation were statistically insignificant

when implied equicorrelation was added as an exogenous regressor to the LDECO specification.

This result may be used to argue for the informational efficiency of the options market. Further,
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this finding is similar to the majority of research in the univariate volatility forecasting literature

where option implied measures have information incremental to historical measures of volatility,

particularly squared daily returns.

In the out-of-sample forecasting results, realized equicorrelation provided superior performance.

It was the best performing model at all horizons and under both the QLIKE and MSE loss functions;

with only one exception to its dominance. Further, it typically generated more accurate forecasts

than models including implied equicorrelation. That is, the in-sample benefits of including implied

equicorrelation did not translate to the out-of-sample analysis. However, the implied equicorrelation

based models did typically outperform those models based on daily returns based estimates of

equicorrelation. Again, these results resemble those in the univariate volatility literature where

implied volatility typically outperform squared daily returns, but do not dominate realized volatility.
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Table 1: Descriptive Statistics for Alternative Equicorrelation Measures Xt

We present the mean, standard deviation, and correlation matrix between four equicorrela-
tion innovation variables: the Linear DECO variable ut (Equation (10)), the average pair-
wise Realized Equicorrelation RECt (Equation (12)), a portfolio-based Realized Equicorre-
lation DRECt (Equation (15)), and the Spearman Realized Equicorrelation SRECt (Equa-
tion (17)); and the implied Equicorrelation from options prices ICt (Equation (19)).

Xt Mean Std Correlation Matrix

ut ICt RECt DRECt SRECt

ut 0.2631 0.2681 1 0.2075 0.2112 0.1624 0.1680

ICt 0.4218 0.1152 0.2075 1 0.4649 0.5047 0.4429

RECt 0.3556 0.1347 0.2112 0.4649 1 0.7237 0.6932

DRECt 0.2782 0.1054 0.1624 0.5047 0.7237 1 0.5523

SRECt 0.3363 0.1221 0.1680 0.4429 0.6932 0.5523 1
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Table 2: In-sample Equicorrelation Model Parameter Estimates
We report parameter estimates for the full in-sample window (robust standard errors are
given in parentheses) and values of the log-likelihood (LCorr, which is given in equation
(2)) for nine candidate models. The models can be categorized into two sub-sets of the
general specification: ρt = ω+αXt−1+βρt−1+γICt, where Xt−1 is one of four innovations
in equicorrelation (the Linear DECO variable ut (Equation (10)), the average pairwise
Realized Equicorrelation RECt (Equation (12)), a portfolio-based Realized Equicorrelation
DRECt (Equation (15))), and the Spearman Realized Equicorrelation SRECt (Equation
(17)) and the implied equicorrelation ICt (Equation (19)). Panel A presents the restricted
models where γ = 0, while Panel B presents the unrestricted model; one exception exists
in which we use implied correlation alone: ρt = ω + γICt. In Panel B, the p-values of a
likelihood ratio test of γ = 0 are reported in parentheses under the relevant log-likelihood
LCorr value.

Panel A: Comparison of Models with Restriction γ = 0

Xt measure ω α β γ LCorr

ut 0.0778 0.0798 0.7523 - -8756.1362
(0.0592) (0.0535) (0.178) -

REC 0.0422 0.1240 0.7769 - -8722.9397
(0.0182) (0.0399) (0.0636) -

DREC 0.1058 0.2181 0.5832 - -8730.4046
(0.0616) (0.1311) (0.2372) -

SREC 0.0365 0.0686 0.8497 - -8747.8650
(0.0120) (0.0213) (0.0392) -

Panel B: Comparison of Models without Restriction γ = 0

ut-IC 0.0210 0.0121 0.7462 0.1920 -8613.6772
(0.0150) (0.0260) (0.0907) (0.0626) (0.0375)

REC-IC 0.0164 0.0199 0.7613 0.1779 -8613.1755
(0.0140) (0.0288) (0.0671) (0.0517) (0.0989)

DREC-IC 0.0202 0.0258 0.7615 0.1872 -8614.3331
(0.0340) (0.0345) (0.2551) (0.0625) (0.0870)

SREC-IC 0.0161 0.0143 0.7728 0.1737 -8613.6491
(0.0147) (0.0255) (0.0681) (0.0587) (0.0493)

IC 0.1362 - - 0.6563 -8638.6055
(0.0407) - - (0.0875)
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Table 3: Non-nested Likelihood Ratio Test Comparisons Between Xt Variables.
We report the results of non-nested Vuong likelihood ratio tests to compare the in-sample
performance of the different equicorrelation models, ρt = ω+αXt−1 +βρt−1 + γICt, where
Xt−1 are the four alternative equicorrelation innovation terms (the Linear DECO variable
ut (Equation (10)), the average pairwise Realized Equicorrelation RECt (Equation (12)), a
portfolio-based Realized Equicorrelation DRECt (Equation (15)), and the Spearman Real-
ized Equicorrelation SRECt (Equation (17)) and ICt is the implied equicorrelation (Equa-
tion (19))). The focus is on the relative performance of the variousXt rather than comparing
restricted models (γ = 0) with unrestricted models. As the models are non-nested, we use
Vuong likelihood ratio statistic outlined in Equation (22), p-values are reported in paren-
theses. The Vuong statistic of row i and column j is positive if model i has a superior
in-sample fit to model j. In each case, H0 : L

i
Corr = Lj

Corr or that the in-sample fit of each

model is equal; H1 : L
i
Corr > Lj

Corr or that model i offers superior in-sample fit.

Panel A: Comparison of Models That Impose the Restriction γ = 0

Xt measure ut REC DREC SREC

ut - -1.4368 -1.1868 -0.4648
(0.9246) (0.8823) (0.6789)

REC 1.4368 - 1.6566 0.3182
(0.0753) (0.0488) (0.3751)

DREC 0.4648 -1.6566 - -0.7740
(0.3210) (0.9511) (0.7805)

SREC 1.1868 -0.3182 0.7740 -
(0.1176) (0.6248) (0.2194)

Panel B: Comparison of Models Without the Restriction γ = 0

ut-IC REC-IC DREC-IC SREC-IC IC

ut-IC - -0.1592 0.2472 -0.0103 1.4104
(0.5632) (0.4023) (.5041) (0.0792)

REC-IC 0.1592 - 0.3504 0.2270 1.4523
(0.4367) (0.3630) (0.4102) (0.0732)

DREC-IC -.2472 -0.3504 - -0.2539 1.4230
(0.5976) (0.6369) (0.6002) (0.0773)

SREC-IC 0.0103 -0.2270 0.2539 - 1.3788
(0.4958) (0.5897) (0.3997) (0.0839)

IC -1.4104 -1.4523 -1.4230 -1.3788 -
(0.9207) (0.9267) (0.9226) (0.9160)
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Table 4: Non-nested Likelihood Ratio Test Comparisons Between Restricted (γ = 0) and
Unrestricted models With Different Xt Variables.
We report the results of non-nested Vuong likelihood ratio tests to compare the in-sample
performance of the unrestricted equicorrelation models, ρt = ω + αXt−1 + βρt−1 + γICt

against restricted models, γ = 0 where Xt−1 are the four alternative equicorrelation inno-
vation terms (the Linear DECO variable ut (Equation (10)), the average pairwise Realized
Equicorrelation RECt (Equation (12)), a portfolio-based Realized Equicorrelation DRECt

(Equation (15)), and the Spearman Realized Equicorrelation SRECt (Equation (17)) and
ICt is the implied equicorrelation (Equation (19))). The focus is on the relative performance
of the restricted models (γ = 0) with unrestricted models where the definition of Xt used
differs between the pairs of models compared. As the models are non-nested, we use Vuong
likelihood ratio statistic outlined in Equation (22), p-values are reported in parentheses.
The Vuong statistic of row i and column j is positive if model i has a superior in-sample
fit to model j. In each case, H0 : Li

Corr = Lj
Corr or that the in-sample fit of each model is

equal; H1 : L
i
Corr > Lj

Corr or that model i offers superior in-sample fit.

Comparison of Restricted and Unrestricted Models

ut REC DREC SREC

ut-IC - 3.1116 3.1911 3.2282
(0.0009) (0.0007) (.0006)

REC-IC 3.3672 - 3.1847 3.2563
(0.0003) (0.0007) (0.0005)

DREC-IC 3.3182 3.0345 - 3.1733
(0.004) (0.0012) (0.0007)

SREC-IC 3.3860 3.1643 3.1831 -
(0.0003) (0.0007) (0.0007)

IC 2.7071 2.3342 2.6358 2.5764
(0.0033) (0.0097) (0.0041) (0.0049)
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Table 5: MCS results for ρt forecasts; MSE, TR, Xt = REC
Summary of Model Confidence Set p-values using the Mean-Square-Error loss function under the range
statistic when realized equicorrelation is the Xt measure. Xindicates a p-value between 0.05 and 0.10,
XXbetween 0.10 and 0.20, and XXXgreater than 0.20.

Horizon cDCC ut ut-IC REC REC-IC SREC SREC-IC DREC DREC-IC IC

ρt+1 XXX XXX XXX

ρt+2 XXX

ρt+3 XXX

ρt+4 XXX X

ρt+5 XX XX XX XXX XXX XXX XX XX XX XXX

ρt+6 X XX XXX XX XX X X XX

ρt+7 XX XX XXX XXX XXX XXX XXX XX XX XXX

ρt+8 XX XX XXX XXX XXX XXX XX XX XX XXX

ρt+9 XX XX XXX XXX XXX XXX XXX XX XX XXX

ρt+10 XX XX XXX XXX XXX XXX XX XX XX XXX

ρt+11 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+12 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+13 XXX XXX XXX XXX XXX XXX XX XXX XXX XXX

ρt+14 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+15 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+16 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+17 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+18 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+19 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+20 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+21 XXX XXX XXX XXX XXX XXX XXX XXX XXX XXX

ρt+22 XX XXX XXX XXX XXX XXX XXX XX XX XX
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Figure 1: Equicorrelation proxies
Plots of the five equicorrelation proxies across the entire sample period of
1st November 2001 through to 30th of October 2009. In Panel A, a cen-
tered moving average is also shown in addition to the daily equicorrelation
estimate, ut
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Figure 2: In-sample fitted equicorrelations
Plots of the fitted equicorrelations, ρt, for the entire full sample period given
each of the six competing models.
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