749 research outputs found
Phototauntomerism of o-nitrobenzyl compounds: o-quinonoid aci-nitro species studied by matrix isolation and DFT calculations
Photolyses of 2-nitrobenzyl methyl ether and 2-nitrotoluene with 254 nm light have been investigated in Ar and N2 matrices at 12 K, and have been found to give o-quinonoid aci-nitro species as the primary photoproducts, along with other products. The o-quinonoid species have UV absorptions at relatively long wavelengths (λmax at 385–430 nm) and undergo facile secondary photolysis when irradiated in these absorption bands. By means of this selective photolysis, fairly complete IR spectra of the o-quinonoids have been obtained. Comparison of the matrix IR spectra of these species with simulated spectra computed using density functional theory (DFT) has confirmed the identity of these reactive intermediates. Moreover, detailed analysis of the fit between the computed and experimental IR spectra has allowed the specific stereoisomers generated to be identified with reasonable confidence. Computations have also been made of the relative energies of the starting compounds, intermediate o-quinonoid isomers and the possible secondary products, together with the transition states connecting them. The results of these computations indicate that the observed stereoisomer of each of the o-quinonoid species cannot arise by photoinduced H-atom transfer followed by isomerizations on the electronic ground-state surfaces, since the energy barriers for reversion to starting compounds are substantially lower than those for the necessary isomerizations. It is therefore concluded that H-atom transfer and conformational interconversion occur in an electronic excited state
Tethered subsatellite study
The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended
Commercial-off-the-shelf simulation package interoperability: Issues and futures
Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future
Particle detection through the quantum counter concept in YAG:Er
We report about a novel scheme for particle detection based on the infrared
quantum counter concept. Its operation consists of a two-step excitation
process of a four level system, that can be realized in rare earth-doped
crystals when a cw pump laser is tuned to the transition from the second to the
fourth level. The incident particle raises the atoms of the active material
into a low lying, metastable energy state, triggering the absorption of the
pump laser to a higher level. Following a rapid non-radiative decay to a
fluorescent level, an optical signal is observed with a conventional detectors.
In order to demonstrate the feasibility of such a scheme, we have investigated
the emission from the fluorescent level S (540 nm band) in an
Er-doped YAG crystal pumped by a tunable titanium sapphire laser when it
is irradiated with 60 keV electrons delivered by an electron gun. We have
obtained a clear signature this excitation increases the
metastable level population that can efficiently be exploited to generate a
detectable optical signal
A Keplerian Disk around the Herbig Ae star HD169142
We present Submillimeter Array observations of the Herbig Ae star HD169142 in
1.3 millimeter continuum emission and 12CO J=2-1 line emission at 1.5 arcsecond
resolution that reveal a circumstellar disk. The continuum emission is centered
on the star position and resolved, and provides a mass estimate of about 0.02
solar masses for the disk. The CO images show patterns in position and velocity
that are well matched by a disk in Keplerian rotation with low inclination to
the line-of-sight. We use radiative transfer calculations based on a flared,
passive disk model to constrain the disk parameters by comparison to the
spectral line emission. The derived disk radius is 235 AU, and the inclination
is 13 degrees. The model also necessitates modest depletion of the CO
molecules, similar to that found in Keplerian disks around T Tauri stars.Comment: 10 pages, 2 figures, accepted by A
Discovery of Reflection Nebulosity Around Five Vega-like Stars
Coronagraphic optical observations of six Vega-like stars reveal reflection
nebulosities, five of which were previously unknown. The nebulosities
illuminated by HD 4881, HD 23362, HD 23680, HD 26676, and HD 49662 resemble
that of the Pleiades, indicating an interstellar origin for dust grains. The
reflection nebulosity around HD 123160 has a double-arm morphology, but no
disk-like feature is seen as close as 2.5 arcsec from the star in K-band
adaptive optics data. We demonstrate that uniform density dust clouds
surrounding HD 23362, HD 23680 and HD 123160 can account for the observed
12-100 micron spectral energy distributions. For HD 4881, HD 26676, and HD
49662 an additional emission source, such as from a circumstellar disk or
non-equilibrium grain heating, is required to fit the 12-25 micron data. These
results indicate that in some cases, particularly for Vega-like stars located
beyond the Local Bubble (>100 pc), the dust responsible for excess thermal
emission may originate from the interstellar medium rather than from a
planetary debris system.Comment: The Astrophysical Journal, in press for March, 2002 (32 pages, 13
figures
Observations of 51 Ophiuchi with MIDI at the VLTI
We present interferometric observations of the Be star 51 Ophiuchi. These
observations were obtained during the science demonstration phase of the MIDI
instrument at the Very Large Telescope Interferometer (VLTI). Using MIDI, a
Michelson 2 beam combiner that operates at the N band (8 to 13 microns), we
obtained for the first time observations of 51 Oph in the mid-infrared at
high-angular resolution. It is currently known that this object presents a
circumstellar dust and gas disk that shows a very different composition from
other Herbig Ae disks. The nature of the 51 Oph system is still a mystery to be
solved. Does it have a companion? Is it a protoplanetary system? We still don't
know. Observations with MIDI at the VLTI allowed us to reach high-angular
resolution (20 mas).We have several uv points that allowed us to constrain the
disk model. We have modeled 51 Oph visibilities and were able to constrain the
size and geometry of the 51 Oph circumstellar disk.Comment: 5 pages, 3 figures, 2 tables, to be published in the proceedings of
"The Power of Optical / IR Interferometry: Recent Scientific Results and 2nd
Generation VLTI Instrumentation", Garching, April 4-8, 200
Warm Gas in the Inner Disks around Young Intermediate Mass Stars
The characterization of gas in the inner disks around young stars is of particular interest because of its connection to planet formation. In order to study the gas in inner disks, we have obtained high-resolution K-band and M-band spectroscopy of 14 intermediate mass young stars. In sources that have optically thick inner disks, i.e. E(K-L)>1, our detection rate of the ro-vibrational CO transitions is 100% and the gas is thermally excited. Of the five sources that do not have optically thick inner disks, we only detect the ro-vibrational CO transitions from HD 141569. In this case, we show that the gas is excited by UV fluorescence and that the inner disk is devoid of gas and dust. We discuss the plausibility of the various scenarios for forming this inner hole. Our modeling of the UV fluoresced gas suggests an additional method by which to search for and/or place stringent limits on gas in dust depleted regions in disks around Herbig Ae/Be stars
- …
