1,337 research outputs found
Probing the Fermi surface by positron annihilation and Compton scattering
Positron annihilation and Compton scattering are important probes of the Fermi surface. Relying on conservation
of energy and momentum, being bulk sensitive and not limited by short electronic mean-free-paths, they can
provide unique information in circumstances when other methods fail. Using a variety of examples, their contribution
to knowledge about the electronic structure of a wide range of materials is demonstrated
Fermi surface of the colossal magnetoresistance perovskite La_{0.7}Sr_{0.3}MnO_{3}
Materials that exhibit colossal magnetoresistance (CMR) are currently the
focus of an intense research effort, driven by the technological applications
that their sensitivity lends them to. Using the angular correlation of photons
from electron-positron annihilation, we present a first glimpse of the Fermi
surface of a material that exhibits CMR, supported by ``virtual crystal''
electronic structure calculations. The Fermi surface is shown to be
sufficiently cubic in nature that it is likely to support nesting.Comment: 5 pages, 5 PS figure
Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids
The state-dependence of the enhancement of the electron-positron momentum
density is investigated for some transition and simple metals (Cr, V, Ag and
Al). Quantitative comparison with linearized muffin-tin orbital calculations of
the corresponding quantity in the first Brillouin zone is shown to yield a
measurement of the enhancement of the s, p and d states, independent of any
parameterizations in terms of the electron density local to the positron. An
empirical correction that can be applied to a first-principles state-dependent
model is proposed that reproduces the measured state-dependence very well,
yielding a general, predictive model for the enhancement of the momentum
distribution of positron annihilation measurements, including those of angular
correlation and coincidence Doppler broadening techniques
Fermi Surface as the Driving Mechanism for Helical Antiferromagnetic Ordering in Gd-Y Alloys
The first direct experimental evidence for the Fermi surface (FS) driving the
helical antiferromagnetic ordering in a gadolinium-yttrium alloy is reported.
The presence of a FS sheet capable of nesting is revealed, and the nesting
vector associated with the sheet is found to be in excellent agreement with the
periodicity of the helical ordering.Comment: 4 pages, 4 figure
Size-Fractionated Nitrogen Uptake Measurements in the Equatorial Pacific and Confirmation of the Low Si-High-Nitrate Low-Chlorophyll Condition
The equatorial Pacific Ocean is the largest natural source of CO(2) to the atmosphere, and it significantly impacts the global carbon cycle. Much of the large flux of upwelled CO(2) to the atmosphere is due to incomplete use of the available nitrate (NO(3)) and low net productivity. This high-nutrient low-chlorophyll (HNLC) condition of the equatorial upwelling zone (EUZ) has been interpreted from modeling efforts to be due to low levels of silicate ( Si( OH) 4) that limit the new production of diatoms. These ideas were incorporated into an ecosystem model, CoSINE. This model predicted production by the larger phytoplankton and the picoplankton and effects on air-sea CO(2) fluxes in the Pacific Ocean. However, there were no size-fractionated rates available for verification. Here we report the first size-fractionated new and regenerated production rates (obtained with (15)N - NO(3) and (15)N - NH(4) incubations) for the EUZ with the objective of validating the conceptual basis and functioning of the CoSINE model. Specifically, the larger phytoplankton ( with cell diameters \u3e 5 mu m) had greater rates of new production and higher f-ratios (i.e., the proportion of NO(3) to the sum of NO(3) and NH(4) uptake) than the picoplankton that had high rates of NH(4) uptake and low f-ratios. The way that the larger primary producers are regulated in the EUZ is discussed using a continuous chemostat approach. This combines control of Si(OH)(4) production by supply rate (bottom-up) and control of growth rate ( or dilution) by grazing ( top-down control)
Impact of future climate change on water temperature and thermal habitat for keystone fishes in the Lower Saint John River, Canada
Water temperature is a key determinant of biological processes in rivers. Temperature in northern latitude rivers is expected to increase under climate change, with potentially adverse consequences for cold water-adapted species. In Canada, little is currently known about the timescales or magnitude of river temperature change, particularly in large (≥104 km2) watersheds. However, because Canadian watersheds are home to a large number of temperature-sensitive organisms, there is a pressing need to understand the potential impacts of climate change on thermal habitats. This paper presents the results of a study to simulate the effects of climate change on the thermal regime of the lower Saint John River (SJR), a large, heavily impounded, socio-economically important watershed in eastern Canada. The CEQUEAU hydrological-water temperature model was calibrated against river temperature observations and driven using meteorological projections from a series of regional climate models. Changes in water temperature were assessed for three future periods (2030–2034, 2070–2074 and 2095–2099). Results show that mean water temperature in the SJR will increase by approximately ~1 °C by 2070–2074 and a further ~1 °C by 2095–2099, with similar findings for the maximum, minimum and standard deviation. We calculated a range of temperature metrics pertaining to the Atlantic Salmon and Striped Bass, key species within the SJR. Results show that while the SJR will become increasingly thermally-limiting for Atlantic Salmon, the Striped Bass growth season may actually lengthen under climate change. These results provide an insight into how climate change may affect thermal habitats for fish in eastern Canadian rivers
Nitrate reductase activity in the subsurface waters of the Peru Current
In March 1976 and 1977, nitrate reductase, nitrate, nitrite, and oxygen were measured between depths of 30 and 250m in the subsurface waters overlying the Peruvian continental shelf and shelf edge at 15S latitude. Oxygen concentrations of less than 1 ml/1 began between 20 and 30m in both years. The oxygen deficient waters extended to the bottom on the shelf and to 440m at the shelf edge...
Modeling Responses of Diatom Productivity and Biogenic Silica Export to Iron Enrichment in the Equatorial Pacific Ocean
Using a three-dimensional physical-biogeochemical model, we have investigated the modeled responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific, and compared the model simulation with in situ (IronEx II) iron fertilization results. In the eastern equatorial Pacific, an area of 540,000 km(2) was enhanced with iron by changing the photosynthetic efficiency and silicate and nitrogen uptake kinetics of phytoplankton in the model for a period of 20 days. The vertically integrated Chl a and primary production increased by about threefold 5 days after the start of the experiment, similar to that observed in the IronEx II experiment. Diatoms contribute to the initial increase of the total phytoplankton biomass, but decrease sharply after 10 days because of mesozooplankton grazing. The modeled surface nutrients (silicate and nitrate) and TCO(2) anomaly fields, obtained from the difference between the iron addition\u27\u27 and ambient\u27\u27 (without iron) concentrations, also agreed well with the IronEx II observations. The enriched patch is tracked with an inert tracer similar to the SF6 used in the IronEx II. The modeled depth-time distribution of sinking biogenic silica (BSi) indicates that it would take more than 30 days after iron injection to detect any significant BSi export out of the euphotic zone. Sensitivity studies were performed to establish the importance of fertilized patch size, duration of fertilization, and the role of mesozooplankton grazing. A larger size of the iron patch tends to produce a broader extent and longer-lasting phytoplankton blooms. Longer duration prolongs phytoplankton growth, but higher zooplankton grazing pressure prevents significant phytoplankton biomass accumulation. With the same treatment of iron fertilization in the model, lowering mesozooplankton grazing rate generates much stronger diatom bloom, but it is terminated by Si(OH)(4) limitation after the initial rapid increase. Increasing mesozooplankton grazing rate, the diatom increase due to iron addition stays at minimum level, but small phytoplankton tend to increase. The numerical model experiments demonstrate the value of ecosystem modeling for evaluating the detailed interaction between biogeochemical cycle and iron fertilization in the equatorial Pacific
- …