11 research outputs found
The Insulin Receptor Substrate 1 (Irs1) in Intestinal Epithelial Differentiation and in Colorectal Cancer
Colorectal cancer (CRC) is associated with lifestyle factors that affect insulin/IGF signaling, of which the insulin receptor substrate 1 (IRS1) is a key transducer. We investigated expression, localization and pathologic correlations of IRS1 in cancer-uninvolved colonic epithelium, primary CRCs with paired liver metastases and in vitro polarizing Caco2 and HT29 cells. IRS1 mRNA and protein resulted higher, relative to paired mucosa, in adenomas of familial adenomatous polyposis patients and in CRCs that overexpressed c-MYC, ß-catenin, InsRß, and IGF1R. Analysis of IRS1 immunostaining in 24 cases of primary CRC with paired colonic epithelium and hepatic metastasis showed that staining intensity was significantly higher in metastases relative to both primary CRC (P<0.01) and colonic epithelium (P<0.01). Primary and metastatic CRCs, compared to colonic epithelium, contained significantly higher numbers of IRS1-positive cells (P = 0.013 and P = 0.014, respectively). Pathologic correlations in 163 primary CRCs revealed that diffuse IRS1 staining was associated with tumors combining differentiated phenotype and aggressive markers (high Ki67, p53, and ß-catenin). In Caco 2 IRS1 and InsR were maximally expressed after polarization, while IGF1R was highest in pre-polarized cells. No nuclear IRS1 was detected, while, with polarization, phosphorylated IRS1 (pIRS1) shifted from the lateral to the apical plasma membrane and was expressed in surface cells only. In HT29, that carry mutations constitutively activating survival signaling, IRS1 and IGF1R decreased with polarization, while pIRS1 localized in nuclear spots throughout the course. Overall, these data provide evidence that IRS1 is modulated according to CRC differentiation, and support a role of IRS1 in CRC progression and liver metastatization
Streamlined analysis schema for high-throughput identification of endogenous protein complexes
Immunoprecipitation followed by mass spectrometry (IP/MS) has recently emerged as a preferred method in the analysis of protein complex components and cellular protein networks. Targeting endogenous protein complexes of higher eukaryotes, particularly in large-scale efforts, has been challenging due to cellular heterogeneity, high proteome complexity, and, compared to lower organisms, lack of efficient in-locus epitope-tagging techniques. It is further complicated by variability in nonspecific identifications and cross-reactivity of primary antibodies. Still, the study of endogenous human protein networks is highly desired despite its challenges. Here we describe a streamlined IP/MS protocol for the purification and identification of extended endogenous protein complexes. We investigate the sources of nonspecific protein binding and develop semiquantitative specificity filters that are based on peptide spectral count measurements. We also outline logical constraints for the derivation of accurate complex composition from IP/MS data and demonstrate the effectiveness of this approach by presenting our analyses of different transcriptional coregulator complexes. We show consistent purification of novel components for the Integrator complex, analyze the composition of the Mediator complex solely from our data to demonstrate the wide usability of spectral counts, and deconvolute heterogeneous HDAC1/2 networks into core complex modules and several novel subcomplex interactions
IRS1 Regulation by Wnt/β-Catenin Signaling and Varied Contribution of IRS1 to the Neoplastic Phenotype*
Dysregulation of β-catenin levels and localization and constitutive activation of β-catenin/TCF (T cell factor)-regulated gene expression occur in many cancers, including the majority of colorectal carcinomas and a subset of ovarian endometrioid adenocarcinomas. Based on the results of microarray-based gene expression profiling we found the insulin receptor substrate 1 (IRS1) gene as one of the most highly up-regulated genes upon ectopic expression of a mutant, constitutively active form of β-catenin in the rat kidney epithelial cell line RK3E. We demonstrate expression of IRS1 can be directly activated by β-catenin, likely in part via β-catenin/TCF binding to TCF consensus binding elements located in the first intron and downstream of the IRS1 transcriptional start site. Consistent with the proposal that β-catenin is an important regulator of IRS1 expression in vivo, we observed that IRS1 is highly expressed in many cancers with constitutive stabilization of β-catenin, such as colorectal carcinomas and ovarian endometrioid adenocarcinomas. Using a short hairpin RNA approach to abrogate IRS1 expression and function, we found that IRS1 function is required for efficient de novo neoplastic transformation by β-catenin in RK3E cells. Our findings add to the growing body of data implicating IRS1 as a critical signaling component in cancer development and progression
UBF activates RNA polymerase I transcription by stimulating promoter escape
Ribosomal RNA gene transcription by RNA polymerase I (Pol I) is the driving force behind ribosome biogenesis, vital to cell growth and proliferation. The key activator of Pol I transcription, UBF, has been proposed to act by facilitating recruitment of Pol I and essential basal factor SL1 to rDNA promoters. However, we found no evidence that UBF could stimulate recruitment or stabilization of the pre-initiation complex (PIC) in reconstituted transcription assays. In this, UBF is fundamentally different from archetypal activators of transcription. Our data imply that UBF exerts its stimulatory effect on RNA synthesis, after PIC formation, promoter opening and first phosphodiester bond formation and before elongation. We provide evidence to suggest that UBF activates transcription in the transition between initiation and elongation, at promoter escape by Pol I. This novel role for UBF in promoter escape would allow control of rRNA synthesis at active rDNA repeats, independent of and complementary to the promoter-specific targeting of SL1 and Pol I during PIC assembly. We posit that stimulation of promoter escape could be a general mechanism of activator function