66 research outputs found

    Lagrangian Volume Deformations around Simulated Galaxies

    Full text link
    We present a detailed analysis of the local evolution of 206 Lagrangian Volumes (LVs) selected at high redshift around galaxy seeds, identified in a large-volume Λ\Lambda cold dark matter (Λ\LambdaCDM) hydrodynamical simulation. The LVs have a mass range of 1−1500×1010M⊙1 - 1500 \times 10^{10} M_\odot. We follow the dynamical evolution of the density field inside these initially spherical LVs from z=10z=10 up to zlow=0.05z_{\rm low} = 0.05, witnessing highly non-linear, anisotropic mass rearrangements within them, leading to the emergence of the local cosmic web (CW). These mass arrangements have been analysed in terms of the reduced inertia tensor IijrI_{ij}^r, focusing on the evolution of the principal axes of inertia and their corresponding eigendirections, and paying particular attention to the times when the evolution of these two structural elements declines. In addition, mass and component effects along this process have also been investigated. We have found that deformations are led by dark matter dynamics and they transform most of the initially spherical LVs into prolate shapes, i.e. filamentary structures. An analysis of the individual freezing-out time distributions for shapes and eigendirections shows that first most of the LVs fix their three axes of symmetry (like a skeleton) early on, while accretion flows towards them still continue. Very remarkably, we have found that more massive LVs fix their skeleton earlier on than less massive ones. We briefly discuss the astrophysical implications our findings could have, including the galaxy mass-morphology relation and the effects on the galaxy-galaxy merger parameter space, among others.Comment: 23 pages, 20 figures. Minor editorial improvement

    Large-scale gas dynamics in the adhesion model: Implications for the two-phase massive galaxy formation scenario

    Full text link
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2011 RAS © 2011 The AuthorsPublished by Oxford University Press on behalf of the Royal Astronomical Society. All rights reservedWe have studied the mass assembly and star formation histories of massive galaxies identified at low redshift in different cosmological hydrodynamical simulations. To this end, we have carried out a detailed follow-up backwards in time of their constituent mass elements (sampled by particles) of different types. After that, the configurations they depict at progressively higher zs were carefully analysed. The analyses show that these histories share common generic patterns, irrespective of particular circumstances. In any case, however, the results we have found are different depending on the particle type. The most outstanding differences follow. We have found that by z∼ 3.5-6, mass elements identified as stellar particles at z= 0 exhibit a gaseous cosmic-web-like morphology with scales of ∼1 physical Mpc, where the densest mass elements have already turned into stars by z∼ 6. These settings are in fact the densest pieces of the cosmic web, where no hot particles show up, and dynamically organized as a hierarchy of flow convergence regions (FCRs), that is, attraction basins for mass flows. At high z FCRs undergo fast contractive deformations with very low angular momentum, shrinking them violently. Indeed, by z∼ 1 most of the gaseous or stellar mass they contain shows up as bound to a massive elliptical-like object at their centres, with typical half-mass radii of rmass star∼ 2-3kpc. After this, a second phase comes about where the mass assembly rate is much slower and characterized by mergers involving angular momentum. On the other hand, mass elements identified at the diffuse hot coronae surrounding massive galaxies at z= 0 do not display a clear web-like morphology at any z. Diffuse gas is heated when FCRs go through contractive deformations. Most of this gas remains hot and with low density throughout the evolution. To shed light on the physical foundations of the behaviour revealed by our analyses (i.e. a two-phase formation process with different implications for diffuse or shocked mass elements), as well as on their possible observational implications, these patterns have been confronted with some generic properties of singular flows as described by the adhesion model (i.e. potential character of the velocity field, singular versus regular points, dressing, locality when a spectrum of perturbations is implemented). We have found that the common patterns the simulations show can be interpreted as a natural consequence of flow properties that, moreover, could explain different generic observational results from massive galaxies or their samples. We briefly discuss some of themThis work was partially supported by the DGES (Spain) through the grants AYA2009-12792-C03-02 and AYA2009-12792- C03-03 from the PNAyA, as well as by the regional Madrid V PRICIT programme through the ASTROMADRID network (CAM S2009/ESP-1496

    The Lack of Structural and Dynamical Evolution of Elliptical Galaxies since z ~ 1.5: Clues from Self-Consistent Hydrodynamical Simulations

    Full text link
    We present results of a study on the evolution of the parameters characterizing the structure and dynamics of the relaxed elliptical-like objects (ELOs) identified at z=0, z=1 and z=1.5 in a set of hydrodynamical, self-consistent simulations operating in the context of a concordance cosmological model. The values of the stellar mass, the stellar half-mass radius and the stellar mean-square velocity have been measured in each ELO and found to populate, at any z, a flattened ellipsoid close to a plane (the dynamical plane, DP). Our simulations indicate that, at the intermediate zs considered, individual ELOs evolve, increasing the values of these parameters as a consequence of on-going mass assembly, but, nevertheless, their DP is roughly preserved within its scatter, in agreement with observations of the Fundamental Plane of ellipticals at different zs. We briefly discuss how this lack of significant dynamical and structural evolution in ELO samples arises, in terms of the two different phases operating in the mass aggregation history of their dark matter halos. According with our simulations, most dissipation involved in ELO formation takes place at the early violent phase, causing the stellar mass, the stellar half-mass radius and the stellar mean-square velocity parameters to settle down to the DP, and, moreover, the transformation of most of the available gas into stars. In the subsequent slow phase, ELO stellar mass growth preferentially occurs through non-dissipative processes, so that the DP is preserved and the ELO star formation rate considerably decreases. These results hint, for the first time, to a possible way of explaining, in the context of cosmological simulations, different apparently paradoxical observational results on ellipticals.Comment: 12 pages, 1 figure. Minor changes to match the published versio

    Clues on Regularity in the Structure and Kinematics of Elliptical Galaxies from Self-consistent Hydrodynamical Simulations: the Dynamical Fundamental Plane

    Full text link
    [Abridged] We have analysed the parameters characterising the mass, size and velocity dispersion both at the baryonic scale and at the halo scales of two samples of relaxed elliptical-like-objects (ELOs) identified, at z=0, in a set of self-consistent hydrodynamical simulations operating in the context of a concordance cosmological model. At the halo scale they have been found to satisfy virial relations; at the scale of the baryonic object the (logarithms of the) ELO stellar masses, projected stellar half-mass radii, and stellar central l.o.s. velocity dispersions define a flattened ellipsoid close to a plane (the intrinsic dynamical plane, IDP), tilted relative to the virial one, whose observational manifestation is the observed FP. The ELO samples have been found to show systematic trends with the mass scale in both, the relative content and the relative distributions of the baryonic and the dark mass ELO components, so that homology is broken in the spatial mass distribution (resulting in the IDP tilt), but ELOs are still a two-parameter family where the two parameters are correlated. The physical origin of these trends presumably lies in the systematic decrease, with increasing ELO mass, of the relative amount of dissipation experienced by the baryonic mass component along ELO stellar mass assembly. ELOs also show kinematical segregation, but it does not appreciably change with the mass scale. The non-homogeneous population of IDPs explains the role played by the virial mass to determine the correlations among intrinsic parameters. In this paper we also show that the central stellar line-of-sight velocity dispersion of ELOs, is a fair empirical estimator of the virial mass, and this explains the central role played by this quantity at determining the observational correlations.Comment: 20 pages, 17 Figures. Only changed to a more readable styl
    • …
    corecore