323 research outputs found
Development of a Multilayer MODIS IST-Albedo Product of Greenland
A new multilayer IST-albedo Moderate Resolution Imaging Spectroradiometer (MODIS) product of Greenland was developed to meet the needs of the ice sheet modeling community. The multiple layers of the product enable the relationship between IST and albedo to be evaluated easily. Surface temperature is a fundamental input for dynamical ice sheet models because it is a component of the ice sheet radiation budget and mass balance. Albedo influences absorption of incoming solar radiation. The daily product will combine the existing standard MODIS Collection-6 ice-surface temperature, derived melt maps, snow albedo and water vapor products. The new product is available in a polar stereographic projection in NetCDF format. The product will ultimately extend from March 2000 through the end of 2017
A Combine On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker
An upgrade to the ATLAS silicon tracker cooling control system may require a
change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6
(hexafluoro-ethane) to reduce the evaporation temperature and better protect
the silicon from cumulative radiation damage with increasing LHC luminosity.
Central to this upgrade is a new acoustic instrument for the real-time
measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its
Supervisory, Control and Data Acquisition (SCADA) software are described in
this paper. The instrument has demonstrated a resolution of 3.10-3 for
C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for
mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw),
higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of
C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has
been seen. The instrument has many potential applications, including the
analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture
and anaesthesia
The extreme melt across the Greenland ice sheet in 2012
The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors – including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder – are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research
Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors
Precision sound velocity measurements can simultaneously determine binary gas
composition and flow. We have developed an analyzer with custom electronics,
currently in use in the ATLAS inner detector, with numerous potential
applications. The instrument has demonstrated ~0.3% mixture precision for
C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and
high flow versions of the instrument have demonstrated flow resolutions of +/-
2% F.S. for flows up to 250 l.min-1, and +/- 1.9% F.S. for linear flow
velocities up to 15 ms-1; the latter flow approaching that expected in the
vapour return of the thermosiphon fluorocarbon coolant recirculator being built
for the ATLAS silicon tracker.Comment: Paper submitted to TWEPP2012; Topical Workshop on Electronics for
Particle Physics, Oxford, UK, September 17-21, 2012. KEYWORDS: Sonar;
Saturated fluorocarbons; Flowmetry; Sound velocity, Gas mixture analysis. 8
pages, 7 figure
Obesity: A Biobehavioral Point of View
Excerpt: If you ask an overweight person, “Why are you fat?’, you will, almost invariably, get the answer, “Because 1 eat too much.” You will get this answer in spite of the fact that of thirteen studies, six find no significant differences in the caloric intake of obese versus nonobese subjects, five report that the obese eat significantly less than the nonobese, and only two report that they eat significantly more
Dense active matter model of motion patterns in confluent cell monolayers
Epithelial cell monolayers show remarkable displacement and velocity
correlations over distances of ten or more cell sizes that are reminiscent of
supercooled liquids and active nematics. We show that many observed features
can be described within the framework of dense active matter, and argue that
persistent uncoordinated cell motility coupled to the collective elastic modes
of the cell sheet is sufficient to produce swirl-like correlations. We obtain
this result using both continuum active linear elasticity and a normal modes
formalism, and validate analytical predictions with numerical simulations of
two agent-based cell models, soft elastic particles and the self-propelled
Voronoi model together with in-vitro experiments of confluent corneal
epithelial cell sheets. Simulations and normal mode analysis perfectly match
when tissue-level reorganisation occurs on times longer than the persistence
time of cell motility. Our analytical model quantitatively matches measured
velocity correlation functions over more than a decade with a single fitting
parameter.Comment: updated version accepted for publication in Nat. Com
Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice
Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs) may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP). This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.</p
Infantile zinc deficiency: Association with autism spectrum disorders
Elucidation of the pathogenesis and effective treatment of autism spectrum disorders is one of the challenges today. In this study, we examine hair zinc concentrations for 1,967 children with autistic disorders (1,553 males and 414 females), and show considerable association with zinc deficiency. Histogram of hair zinc concentration was non-symmetric with tailing in lower range, and 584 subjects were found to have lower zinc concentrations than −2 standard deviation level of its reference range (86.3–193ppm). The incidence rate of zinc deficiency in infant group aged 0–3 year-old was estimated 43.5 % in male and 52.5 % in female. The lowest zinc concentration of 10.7 ppm was detected in a 2-year-old boy, corresponding to about 1/12 of the control mean level. These findings suggest that infantile zinc deficiency may epigenetically contribute to the pathogenesis of autism and nutritional approach may yield a novel hope for its treatment and prevention
Metastasis of hormone-independent breast cancer to lung and bone is decreased by α-difluoromethylornithine treatment
INTRODUCTION: Polyamines affect proliferation, differentiation, migration and apoptosis of cells, indicating their potential as a target for cancer chemotherapy. Ornithine decarboxylase converts ornithine to putrescine and is the rate-limiting step in polyamine synthesis. α-Difluoromethylornithine (DFMO) irreversibly inhibits ornithine decarboxylase and MDA-MB-435 human breast cancer metastasis to the lung without blocking orthotopic tumor growth. This study tested the effects of DFMO on orthotopic tumor growth and lung colonization of another breast cancer cell line (MDA-MB-231) and the effects on bone metastasis of MDA-MB-435 cells. METHODS: MDA-MB-231 cells were injected into the mammary fat pad of athymic mice. DFMO treatment (2% per orally) began at the day of tumor cell injection or 21 days post injection. Tumor growth was measured weekly. MDA-MB-231 cells were injected into the tail vein of athymic mice. DFMO treatment began 7 days prior to injection, or 7 or 14 days post injection. The number and incidence of lung metastases were determined. Green fluorescent protein-tagged MDA-MB-435 cells were injected into the left cardiac ventricle in order to assess the incidence and extent of metastasis to the femur. DFMO treatment began 7 days prior to injection. RESULTS: DFMO treatment delayed MDA-MB-231 orthotopic tumor growth to a greater extent than growth of MDA-MB-435 tumors. The most substantial effect on lung colonization by MDA-MB-231 cells occurred when DFMO treatment began 7 days before intravenous injection of tumor cells (incidence decreased 28% and number of metastases per lung decreased 35–40%). When DFMO treatment began 7 days post injection, the incidence and number of metastases decreased less than 10%. Surprisingly, treatment initiated 14 days after tumor cell inoculation resulted in a nearly 50% reduction in the number of lung metastases without diminishing the incidence. After intracardiac injection, DFMO treatment decreased the incidence of bone metastases (55% vs 87%) and the area occupied by the tumor (1.66 mm(2 )vs 4.51 mm(2), P < 0.05). CONCLUSION: Taken together, these data demonstrate that DFMO exerts an anti-metastatic effect in more than one hormone-independent breast cancer, for which no standard form of biologically-based treatment exists. Importantly, the data show that DFMO is effective against metastasis to multiple sites and that treatment is generally more effective when administered early
- …