318 research outputs found

    Magnetic nanobeads decorated by thermo-responsive PNIPAM shell as medical platforms for the efficient delivery of doxorubicin to tumour cells

    Get PDF
    Medical nanoplatforms based on clusters of superparamagnetic nanoparticles decorated with a PNIPAM thermo-responsive shell have been synthesized and used as drug carriers for doxorubicin (DOXO), a common chemotherapeutic agent. The nanosystem here developed has a total diameter below 200 nm and exploits the temperature responsive behaviour of the PNIPAM polymeric shell for the controlled loading and release of DOXO. The system has been tested in vitro on tumour cells and it clearly demonstrates the effectiveness of drug polymer encapsulation and time-dependent cell death induced by the doxorubicin release. Comparative cellular studies of the DOXO loaded nanoplatform in the presence or absence of an external magnet (0.3 T) showed the synergic effect of accumulation and enhanced toxicity of the system, when magnetically guided, resulting in the enhanced efficacy of the system

    Acidic pH-responsive nanogels as smart cargo systems for the simultaneous loading and release of short oligonucleotides and magnetic nanoparticles.

    Get PDF
    Smart materials able to sense environmental stimuli can be exploited as intelligent carrier systems. Acidic pH-responsive polymers, for instance, exhibit a variation in the ionization state upon lowering the pH, which leads to their swelling. The different permeability of these polymers as a function of the pH could be exploited for the incorporation and subsequent release of previously trapped payload molecules/nanoparticles. We provide here a proof of concept of a novel use of pH-responsive polymer nanostructures based on 2-vinylpyridine and divinylbenzene, having an overall size below 200 nm, as cargo system for magnetic nanoparticles, for oligonucleotide sequences, as well as for their simultaneous loading and controlled release mediated by the pH

    Conformable Nanowire-in-Nanofiber Hybrids for Low-Threshold Optical Gain in the Ultraviolet

    Get PDF
    The miniaturization of diagnostic devices that exploit optical detection schemes requires the design of light sources combining small size, high performance for effective excitation of chromophores, and mechanical flexibility for easy coupling to components with complex and nonplanar shapes. Here, ZnO nanowire-in-fiber hybrids with internal architectural order are introduced, exhibiting a combination of polarized stimulated emission, low propagation losses of light modes, and structural flexibility. Ultrafast transient absorption experiments on the electrospun material show optical gain which gives rise to amplified spontaneous emission with a threshold lower than the value found in films. These systems are highly flexible and can conveniently conform to curved surfaces, which makes them appealing active elements for various device platforms, such as bendable lasers, optical networks, and sensors, as well as for application in bioimaging, photo-cross-linking, and optogenetics

    An unscented Kalman filter based navigation algorithm for autonomous underwater vehicles

    Get PDF
    Robust and performing navigation systems for Autonomous Underwater Vehicles (AUVs) play a discriminant role towards the success of complex underwater missions involving one or more AUVs. The quality of the filtering algorithm for the estimation of the AUV navigation state strongly affects the performance of the overall system. In this paper, the authors present a comparison between the Extended Kalman Filter (EKF) approach, classically used in the field of underwater robotics and an Unscented Kalman Filter (UKF). The comparison results to be significant as the two strategies of filtering are based on the same process and sensors models. The UKF-based approach, here adapted to the AUV case, demonstrates to be a good trade-off between estimation accuracy and computational load. UKF has not yet been extensively used in practical underwater applications, even if it turns out to be quite promising. The proposed results rely on the data acquired during a sea mission performed by one of the two Typhoon class vehicles involved in the NATO CommsNet13 experiment (held in September 2013). As ground truth for performance evaluation and comparison, performed offline, position measurements obtained through Ultra-Short BaseLine (USBL) fixes are used. The result analysis leads to identify both the strategies as effective for the purpose of being included in the control loop of an AUV. The UKF approach demonstrates higher performance encouraging its implementation as a more suitable navigation algorithm even if, up to now, it is still not used much in this field

    Beam Test of BTeV Pixel Detectors

    Full text link
    The silicon pixel vertex detector is one of the key elements of the BTeV spectrometer. Detector prototypes were tested in a beam at Fermilab. We report here on the measured spatial resolution as a function of the incident angles for different sensor-readout electronics combinations. We compare the results with predictions from our Monte Carlo simulation.Comment: 7 pages, 5 figures, Invited talk given by J.C. Wang at "Vertex 2000, 9th International Workshop on Vertex Detectors", Michigan, Sept 10-15, 2000. To be published in NIM

    Performance of prototype BTeV silicon pixel detectors in a high energy pion beam

    Get PDF
    The silicon pixel vertex detector is a key element of the BTeV spectrometer. Sensors bump-bonded to prototype front-end devices were tested in a high energy pion beam at Fermilab. The spatial resolution and occupancies as a function of the pion incident angle were measured for various sensor-readout combinations. The data are compared with predictions from our Monte Carlo simulation and very good agreement is found.Comment: 24 pages, 20 figure
    • …
    corecore