243 research outputs found

    WGEUROBUS – Working Group “Towards a EURopean OBservatory of the non-indigenous calanoid copepod Pseudodiaptomus marinUS”

    Get PDF
    Since 2007, the non-indigenous calanoid copepod Pseudodiaptomus marinus Sato, 1913 has been increasingly recorded in numerous European sites, spreading at an unexpectedly fast pace over a short time-span. This species presents specific biological and behavioural traits which make it of particular interest for ecological and applied research topics. On 29–30 January 2018, 29 scientists from nine European Countries established the EUROBUS (Towards a EURopean OBservatory of the nonindigenous calanoid copepod Pseudodiaptomus marinUS) Working Group (WG). This WG aimed at creating a European network of institutions and researchers working on the various aspects of the biology and ecology of P. marinus, with an open forum where sharing experience and know-how among WG participants. This brought to an updated distribution map of P. marinus in European waters, as well as to the identification of priority research lines and potential joint initiatives under the WGEUROBUS umbrella. This contribution, stemming from the experts participating at the WG, represents the manifesto of the current and future initiatives developed within WGEUROBUS

    Ocean current connectivity propelling the secondary spread of a marine invasive comb jelly across western Eurasia

    Get PDF
    Aim: Invasive species are of increasing global concern. Nevertheless, the mechanisms driving furtherdistribution after the initial establishment of non-native species remain largely unresolved, especiallyin marine systems. Ocean currents can be a major driver governing range occupancy, but this hasnot been accounted for in most invasion ecology studies so far. We investigate how well initialestablishment areas are interconnected to later occupancy regions to test for the potential role ofocean currents driving secondary spread dynamics in order to infer invasion corridors and thesource–sink dynamics of a non-native holoplanktonic biological probe species on a continental scale.Location: Western Eurasia.Time period: 1980s–2016.Major taxa studied: ‘Comb jelly’ Mnemiopsis leidyi.Methods: Based on 12,400 geo-referenced occurrence data, we reconstruct the invasion historyof M. leidyi in western Eurasia. We model ocean currents and calculate their stability to match thetemporal and spatial spread dynamics with large-scale connectivity patterns via ocean currents.Additionally, genetic markers are used to test the predicted connectivity between subpopulations.Results: Ocean currents can explain secondary spread dynamics, matching observed range expansionsand the timing of first occurrence of our holoplanktonic non-native biological probe species,leading to invasion corridors in western Eurasia. In northern Europe, regional extinctions after coldwinters were followed by rapid recolonizations at a speed of up to 2,000 km per season. SourceJASPERS ET AL. | 815areas hosting year-round populations in highly interconnected regions can re-seed genotypes overlarge distances after local extinctions.Main conclusions: Although the release of ballast water from container ships may contribute tothe dispersal of non-native species, our results highlight the importance of ocean currents drivingsecondary spread dynamics. Highly interconnected areas hosting invasive species are crucial forsecondary spread dynamics on a continental scale. Invasion risk assessments should considerlarge-scale connectivity patterns and the potential source regions of non-native marine species

    A New Mixed-Backbone Oligonucleotide against Glucosylceramide Synthase Sensitizes Multidrug-Resistant Tumors to Apoptosis

    Get PDF
    Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent

    Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS)

    Get PDF
    Background Several neurorehabilitation strategies have been introduced over the last decade based on the so-called simulation hypothesis. This hypothesis states that a neural network located in primary and secondary motor areas is activated not only during overt motor execution, but also during observation or imagery of the same motor action. Based on this hypothesis, we investigated the combination of a virtual reality (VR) based neurorehabilitation system together with a wireless functional near infrared spectroscopy (fNIRS) instrument. This combination is particularly appealing from a rehabilitation perspective as it may allow minimally constrained monitoring during neurorehabilitative training. Methods fNIRS was applied over F3 of healthy subjects during task performance in a virtual reality (VR) environment: 1) 'unilateral' group (N = 15), contralateral recording during observation, motor imagery, observation & motor imagery, and imitation of a grasping task performed by a virtual limb (first-person perspective view) using the right hand; 2) 'bilateral' group (N = 8), bilateral recording during observation and imitation of the same task using the right and left hand alternately. Results In the unilateral group, significant within-condition oxy-hemoglobin concentration Δ[O2Hb] changes (mean ± SD μmol/l) were found for motor imagery (0.0868 ± 0.5201 μmol/l) and imitation (0.1715 ± 0.4567 μmol/l). In addition, the bilateral group showed a significant within-condition Δ[O2Hb] change for observation (0.0924 ± 0.3369 μmol/l) as well as between-conditions with lower Δ[O2Hb] amplitudes during observation compared to imitation, especially in the ipsilateral hemisphere (p < 0.001). Further, in the bilateral group, imitation using the non-dominant (left) hand resulted in larger Δ[O2Hb] changes in both the ipsi- and contralateral hemispheres as compared to using the dominant (right) hand. Conclusions This study shows that our combined VR-fNIRS based neurorehabilitation system can activate the action-observation system as described by the simulation hypothesis during performance of observation, motor imagery and imitation of hand actions elicited by a VR environment. Further, in accordance with previous studies, the findings of this study revealed that both inter-subject variability and handedness need to be taken into account when recording in untrained subjects. These findings are of relevance for demonstrating the potential of the VR-fNIRS instrument in neurofeedback applications

    Language experience impacts brain activation for spoken and signed language in infancy: Insights from unimodal and bimodal bilinguals

    Get PDF
    Recent neuroimaging studies suggest that monolingual infants activate a left lateralised fronto-temporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near infrared spectroscopy (fNIRS) data from 60 hearing infants (4-to-8 months): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, while sign language elicited activation in the right temporo-parietal area. A significant difference in brain lateralisation was observed between groups. Activation in the posterior temporal region was not lateralised in monolinguals and bimodal bilinguals, but right lateralised in response to both language modalities in unimodal bilinguals. This suggests that experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPA) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language, and that unimodal bilingual experience has greater impact on early brain lateralisation than bimodal bilingual experience
    corecore