315 research outputs found

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201

    Trip-Based Public Transit Routing

    Get PDF
    We study the problem of computing all Pareto-optimal journeys in a public transit network regarding the two criteria of arrival time and number of transfers taken. We take a novel approach, focusing on trips and transfers between them, allowing fine-grained modeling. Our experiments on the metropolitan network of London show that the algorithm computes full 24-hour profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA 201

    Tractable Pathfinding for the Stochastic On-Time Arrival Problem

    Full text link
    We present a new and more efficient technique for computing the route that maximizes the probability of on-time arrival in stochastic networks, also known as the path-based stochastic on-time arrival (SOTA) problem. Our primary contribution is a pathfinding algorithm that uses the solution to the policy-based SOTA problem---which is of pseudo-polynomial-time complexity in the time budget of the journey---as a search heuristic for the optimal path. In particular, we show that this heuristic can be exceptionally efficient in practice, effectively making it possible to solve the path-based SOTA problem as quickly as the policy-based SOTA problem. Our secondary contribution is the extension of policy-based preprocessing to path-based preprocessing for the SOTA problem. In the process, we also introduce Arc-Potentials, a more efficient generalization of Stochastic Arc-Flags that can be used for both policy- and path-based SOTA. After developing the pathfinding and preprocessing algorithms, we evaluate their performance on two different real-world networks. To the best of our knowledge, these techniques provide the most efficient computation strategy for the path-based SOTA problem for general probability distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental Algorithms 2016 and published by Springer in the Lecture Notes in Computer Science series on June 1, 2016. Includes typographical corrections and modifications to pre-processing made after the initial submission to SODA'15 (July 7, 2014

    Scanning Electron Microscopy in Bone Pathology: Review of Methods, Potential and Applications

    Get PDF
    This article reviews the applications of SEM methods to human bone pathologies referring to studies made at UCL. We consider the methods which may be most suitable; these prove to be not routine in the context of most bio-medical applications of SEM. Valuable information can be obtained from a bone sample if its edges are ground flat, before making either (a) a matrix surface preparation by washing away all the cells or (b) a mineralising front preparation, by also dissolving the osteoid -for which hydrogen peroxide is recommended to produce a robust specimen. BSE contrast from a cut block surface can be used to measure bone phase volume. SE contrasts from natural surfaces (trabeculae, canals and lacunae) can be used to study forming, resting and resorbing* surfaces both qualitatively and quantitatively (*except in the case of histological osteomalacia, where the existence of osteoid will go undetected and reversal lines will be difficult to distinguish from recently resorbed surfaces). We also recommend the use of PMMA embedded bone blocks, which can be used as obtained from the pathologist, but are better embedded by a more rigorous procedure. BSE image analysis can be used to quantitate bone density fractions opening up a completely new investigative method for the future. Osteoid can be measured automatically using CL if the bone sample is block stained with brilliant sulphaflavine before embedding or if a scintillant is added to the embeddant. We give examples of observations made from a number of bone diseases: vitamin D resistant rickets, ostegenesis imperfecta; osteomalacia; osteoporosis; hyperparathyroidism; fluorosis; Paget \u27s disease; tumour metastasis to bone

    Size reduction of complex networks preserving modularity

    Get PDF
    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.Comment: 14 pages, 2 figure

    Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age

    Get PDF
    Retrospective histologic analyses of bone biopsies and of post mortem samples from normal persons of different age groups, and of bone biopsies of age- and sex-matched groups of patients with primary osteoporosis and aplastic anemia show characteristic age dependent as well as pathologic changes including atrophy of osseous trabeculae and of hematopoiesis, and changes in the sinusoidal and arterial capillary compartments. These results indicate the possible role of a microvascular defect in the pathogenesis of osteoporosis and aplastic anemia

    Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q

    Full text link
    Modularity Q is an important function for identifying community structure in complex networks. In this paper, we prove that the modularity maximization problem is equivalent to a nonconvex quadratic programming problem. This result provide us a simple way to improve the efficiency of heuristic algorithms for maximizing modularity Q. Many numerical results demonstrate that it is very effective.Comment: 9 pages, 3 figure

    Efficient Routing in Road Networks with Turn Costs

    Full text link
    • …
    corecore