210 research outputs found

    Career-computer simulation increases perceived importance of learning about rare diseases

    Full text link
    Background: Rare diseases may be defined as occurring in less than 1 in 2000 patients. Such conditions are, however, so numerous that up to 5.9% of the population is afflicted by a rare disease. The gambling industry attests that few people have native skill evaluating probabilities. We believe that both students and academics, under-estimate the likelihood of encountering rare diseases. This combines with pressure on curriculum time, to reduce both student interest in studying rare diseases, and academic content preparing students for clinical practice. Underestimation of rare diseases, may also contribute to unhelpful blindness to considering such conditions in the clinic. Methods: We first developed a computer simulation, modelling the number of cases of increasingly rare conditions encountered by a cohort of clinicians. The simulation captured results for each year of practice, and for each clinician throughout the entirety of their careers. Four hundred sixty-two theoretical conditions were considered, with prevalence ranging from 1 per million people through to 64.1% of the population. We then delivered a class with two in-class on-line surveys evaluating student perception of the importance of learning about rare diseases, one before and the other after an in-class real-time computer simulation. Key simulation variables were drawn from the student group, to help students project themselves into the simulation. Results: The in-class computer simulation revealed that all graduating clinicians from that class would frequently encounter rare conditions. Comparison of results of the in-class survey conducted before and after the computer simulation, revealed a significant increase in the perceived importance of learning about rare diseases (p < 0.005). Conclusions: The computer career simulation appeared to affect student perception. Because the computer simulation demonstrated clinicians frequently encounter patients with rare diseases, we further suggest this should be considered by academics during curriculum review and design

    Effect of varying material anisotropy on critical current anistropy in vicinal YBa2_2Cu3_3O7−ή_{7-\delta} thin films

    Get PDF
    The high TcT_{c} cuprate superconductors are noted for their anisotropic layered structure, certain of these materials indeed tend toward the limit of a Lawrence-Doniach superconductor. However, YBa2_2Cu3_3O7−ή_{7-\delta} has a smaller anisotropy than would be expected from its interlayer spacing. This is due to the cuprate chains in the structure. To investigate the influence of the chain oxygen on transport properties critical current versus applied field angle measurements were performed on fully oxygenated and de-oxygenated YBa2_2Cu3_3O7−ή_{7-\delta} thin films and optimally oxygenated Y0.75_{0.75}Ca0.2_{0.2}Ba2_2Cu3_3O7−ή_{7-\delta} thin films. The films were grown on 10∘^{\circ} mis-cut SrTiO3_3 substrates to enable the intrinsic vortex channelling effect to be observed. The form of the vortex channelling minimum observed in field angle dependent critical current studies on the films was seen to depend on film oxygenation. The vortex channelling effect is dependent on a angular dependent cross-over to a string-pancake flux line lattice. The results obtained appear to be consistent with the prediction of Blatter et al. [Rev. Mod. Phys., 66 (4): 1125 (1994)] that increased superconducting anisotropy leads to the kinked string-pancake lattice existing over a smaller angular range.Comment: To be submitted to AP

    Scaling of Island Growth in Pb Overlayers on Cu(001)

    Full text link
    The growth and ordering of a Pb layer deposited on Cu(001) at 150 K has been studied using atom beam scattering. At low coverage, ordered Pb islands with a large square unit cell and nearly hexagonal internal structure are formed. This is a high order commensurate phase with 30 atoms in the unit cell. From the measurement of the island diffraction peak profiles we find a power law for the mean island - size versus coverage with an exponent n=0.54±0.03n=0.54 \pm 0.03. A scaling behavior of growth is confirmed and a simple model describing island growth is presented. Due to the high degeneracy of the monolayer phase, different islands do not diffract coherently. Therefore, when islands merge they still diffract as separate islands and coalescence effects are thus negligible. From the result for nn we conclude that the island density is approximately a constant in the coverage range 0.1<Θ<0.50.1 < \Theta < 0.5 where the ordered islands are observed. We thus conclude that most islands nucleate at Θ<0.1\Theta < 0.1 and then grow in an approximately self similar fashion as Θ\Theta increases.Comment: 23 pages, 10 Figures (available upon request). SU-PHYS-93-443-375

    Growth of Epitaxial Tungsten Nanorods

    Full text link
    A simple vapour deposition technique was used to prepare WO3 one-dimensional nanostructures.WO3 is sublimated at a relatively low temperature (550 1C) in air at atmospheric pressure.The sublimated species are condensed on mica substrate at 500 1C.Single crystalline nanorods are grown in epitaxy on the mica surface with a growth axis along [0 1 0] directions and (0 0 1) plane parallel to the substrate.A growth process is proposed in which the formation of a onedimensional tetragonal tungsten bronze as precursor is the determining factor

    Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria

    Get PDF
    The aim of the present study was the chemical characterization of some medically relevant essential oils (tea tree, clove, cinnamon bark, thyme and eucalyptus) and the investigation of antibacterial effect of the components of these oils by use of a direct bioautographic method. Thin layer chromatography (TLC) was combined with biological detection in this process. The chemical composition of the oils was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Eucalyptol (84.2%) was the main component of the essential oil of eucalyptus, eugenol (83.7%) of clove oil, and trans-cinnamic aldehyde (73.2%), thymol (49.9%) and terpinen-4-ol (45.8%) of cinnamon bark, thyme and tea tree oils, respectively. Antibacterial activity of the separated components of these oils, as well as their pure main components (eucalyptol, eugenol, trans-cinnamic aldehyde and thymol) was observed against the Gram-negative luminescence tagged plant pathogenic bacterium Pseudomonas syringae pv. maculicola (Psmlux) and the Gram-negative, naturally luminescent marine bacterium Vibrio fischeri. On the whole, the antibacterial activity of the essential oils could be related to their main components, but the minor constituents may be involved in this process. Trans-cinnamic aldehyde and eugenol were the most active compounds in TLC-bioautography. The sensitivity of TLC-bioautographic method can be improved with using luminescent test bacteria. This method is more cost-effective and provides more reliable results in comparison with conventional microbiological methods, e.g. disc-diffusion technique

    The CEDAR Project

    Get PDF
    The LHC project at CERN requires both the handling of a huge amount of engineering information and the control of the coherence of this information as the design work evolves on the machine and the experiments. A commercial Engineering Data Management System, (EDMS), is being implemented to manage data for the design, construction, installation and maintenance of both the accelerator and the experiments. This CERN-wide project is called CEDAR The World Wide Web is used to make the information accessible at CERN and in the external collaborating laboratories around the world. In this paper we describe the objectives of the CEDAR project, the different subprojects in the machine and the experiments as well as the first results of the implementation work

    Rare parasitic copepods (Siphonostomatoida: Lernanthropidae) from Egyptian Red Sea fishes

    Get PDF
    © The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    SLAC's polarized electron source laser system for the E-158 parity violation experiment

    Get PDF
    SLAC E158 is an experiment to make the first measurement of parity violation in Moller scattering. The left-right cross-section asymmetry in the elastic scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target will be measured to an accuracy of better than 10-8, with the expected Standard Model asymmetry being approximately 10-7. An intense circularly polarized laser beam for the polarized electron source is required with the ability to quickly switch between left and right polarization states with minimal left-right asymmetries in the parameters of the electron beam. This laser beam is produced by a unique SLAC-designed, flash-lamp pumped, Ti:Sapphire laser. We present this laser system design and initial results from recent commissioning runs

    SLAC's polarized electron source laser system for the E-158 parity violation experiment

    Get PDF
    SLAC E158 is an experiment to make the first measurement of parity violation in Moller scattering. The left-right cross-section asymmetry in the elastic scattering of a 45-GeV polarized electron beam off unpolarized electrons in a liquid hydrogen target will be measured to an accuracy of better than 10-8, with the expected Standard Model asymmetry being approximately 10-7. An intense circularly polarized laser beam for the polarized electron source is required with the ability to quickly switch between left and right polarization states with minimal left-right asymmetries in the parameters of the electron beam. This laser beam is produced by a unique SLAC-designed, flash-lamp pumped, Ti:Sapphire laser. We present this laser system design and initial results from recent commissioning runs
    • 

    corecore