125 research outputs found

    Tracing the Origin of the Fungal α1 Domain Places Its Ancestor in the HMG-Box Superfamily: Implication for Fungal Mating-Type Evolution

    Get PDF
    BACKGROUND: Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. METHODOLOGY/PRINCIPAL FINDINGS: We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. CONCLUSIONS/SIGNIFICANCE: Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG

    Systematic Deletion of Homeobox Genes in Podospora anserina Uncovers Their Roles in Shaping the Fruiting Body

    Get PDF
    Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures

    Sex in the PAC: A hidden affair in dark septate endophytes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or <it>in vitro </it>and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the <it>Phialocephala fortinii </it>s. l. - <it>Acephala applanata </it>species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (<it>MAT</it>) genes involved in reproductive processes.</p> <p>Results</p> <p>The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas <it>A. applanata </it>had a homothallic (self-fertile) <it>MAT </it>locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. <it>MAT </it>genes were shown to evolve under strong purifying selection.</p> <p>Conclusions</p> <p>The signature of sex was found in worldwide populations of PAC species and functionality of <it>MAT </it>genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and <it>in vitro </it>crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.</p

    The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi

    Get PDF
    Mating in basidiomycetous fungi is often controlled by two unlinked, multiallelic loci encoding homeodomain transcription factors or pheromones/pheromone receptors. In contrast to this tetrapolar organization, Cryptococcus neoformans/Cryptococcus gattii have a bipolar mating system, and a single biallelic locus governs sexual reproduction. The C. neoformans MAT locus is unusually large (>100 kb), contains >20 genes, and enhances virulence. Previous comparative genomic studies provided insights into how this unusual MAT locus might have evolved involving gene acquisitions into two unlinked loci and fusion into one contiguous locus, converting an ancestral tetrapolar system to a bipolar one. Here we tested this model by studying Cryptococcus heveanensis, a sister species to the pathogenic Cryptococcus species complex. An extant sexual cycle was discovered; co-incubating fertile isolates results in the teleomorph (Kwoniella heveanensis) with dikaryotic hyphae, clamp connections, septate basidia, and basidiospores. To characterize the C. heveanensis MAT locus, a fosmid library was screened with C. neoformans/C. gattii MAT genes. Positive fosmids were sequenced and assembled to generate two large probably unlinked MAT gene clusters: one corresponding to the homeodomain locus and the other to the pheromone/receptor locus. Strikingly, two divergent homeodomain genes (SXI1, SXI2) are present, similar to the bE/bW Ustilago maydis paradigm, suggesting one or the other homeodomain gene was recently lost in C. neoformans/C. gattii. Sequencing MAT genes from other C. heveanensis isolates revealed a multiallelic homeodomain locus and at least a biallelic pheromone/receptor locus, similar to known tetrapolar species. Taken together, these studies reveal an extant C. heveanensis sexual cycle, define the structure of its MAT locus consistent with tetrapolar mating, and support the proposed evolutionary model for the bipolar Cryptococcus MAT locus revealing transitions in sexuality concomitant with emergence of a pathogenic clade. These studies provide insight into convergent processes that independently punctuated evolution of sex-determining loci and sex chromosomes in fungi, plants, and animals

    Wood Utilization Is Dependent on Catalase Activities in the Filamentous Fungus Podospora anserina

    Get PDF
    Catalases are enzymes that play critical roles in protecting cells against the toxic effects of hydrogen peroxide. They are implicated in various physiological and pathological conditions but some of their functions remain unclear. In order to decipher the role(s) of catalases during the life cycle of Podospora anserina, we analyzed the role of the four monofunctional catalases and one bifunctional catalase-peroxidase genes present in its genome. The five genes were deleted and the phenotypes of each single and all multiple mutants were investigated. Intriguingly, although the genes are differently expressed during the life cycle, catalase activity is dispensable during both vegetative growth and sexual reproduction in laboratory conditions. Catalases are also not essential for cellulose or fatty acid assimilation. In contrast, they are strictly required for efficient utilization of more complex biomass like wood shavings by allowing growth in the presence of lignin. The secreted CATB and cytosolic CAT2 are the major catalases implicated in peroxide resistance, while CAT2 is the major player during complex biomass assimilation. Our results suggest that P. anserina produces external H2O2 to assimilate complex biomass and that catalases are necessary to protect the cells during this process. In addition, the phenotypes of strains lacking only one catalase gene suggest that a decrease of catalase activity improves the capacity of the fungus to degrade complex biomass

    Evolution of reproductive development in the volvocine algae

    Get PDF
    The evolution of multicellularity, the separation of germline cells from sterile somatic cells, and the generation of a male–female dichotomy are certainly among the greatest innovations of eukaryotes. Remarkably, phylogenetic analysis suggests that the shift from simple to complex, differentiated multicellularity was not a unique progression in the evolution of life, but in fact a quite frequent event. The spheroidal green alga Volvox and its close relatives, the volvocine algae, span the full range of organizational complexity, from unicellular and colonial genera to multicellular genera with a full germ–soma division of labor and male–female dichotomy; thus, these algae are ideal model organisms for addressing fundamental issues related to the transition to multicellularity and for discovering universal rules that characterize this transition. Of all living species, Volvox carteri represents the simplest version of an immortal germline producing specialized somatic cells. This cellular specialization involved the emergence of mortality and the production of the first dead ancestors in the evolution of this lineage. Volvocine algae therefore exemplify the evolution of cellular cooperation from cellular autonomy. They also serve as a prime example of the evolution of complex traits by a few successive, small steps. Thus, we learn from volvocine algae that the evolutionary transition to complex, multicellular life is probably much easier to achieve than is commonly believed
    corecore