54 research outputs found
The Murchison Widefield Array: Design Overview
The Murchison Widefield Array (MWA) is a dipole-based aperture array
synthesis telescope designed to operate in the 80-300 MHz frequency range. It
is capable of a wide range of science investigations, but is initially focused
on three key science projects. These are detection and characterization of
3-dimensional brightness temperature fluctuations in the 21cm line of neutral
hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10,
solar imaging and remote sensing of the inner heliosphere via propagation
effects on signals from distant background sources,and high-sensitivity
exploration of the variable radio sky. The array design features 8192
dual-polarization broad-band active dipoles, arranged into 512 tiles comprising
16 dipoles each. The tiles are quasi-randomly distributed over an aperture
1.5km in diameter, with a small number of outliers extending to 3km. All
tile-tile baselines are correlated in custom FPGA-based hardware, yielding a
Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point
spread function (PSF) quality. The correlated data are calibrated in real time
using novel position-dependent self-calibration algorithms. The array is
located in the Murchison region of outback Western Australia. This region is
characterized by extremely low population density and a superbly radio-quiet
environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings
of the IEE
The giant lobes of Centaurus A observed at 118MHz with the Murchison Widefield Array
We present new wide-field observations of Centaurus A (Cen A) and the surrounding region at 118MHz with the Murchison Widefield Array (MWA) 32-tile prototype, with which we investigate the spectral-index distribution of Cen A’s giant radio lobes. We compare our images to 1.4 GHz maps of Cen A and compute spectral indices using temperature–temperature plots and spectral tomography. We find that the morphologies at 118MHz and 1.4 GHz match very closely apart from an extra peak in the southern lobe at 118 MHz, which provides tentative evidence for the existence of a southern counterpart to the northern middle lobe of Cen A. Our spatially averaged spectral indices for both the northern and southern lobes are consistent with previous analyses, however we find significant spatial variation of the spectra across the extent of each lobe. Both the spectral-index distribution and the morphology at low radio frequencies support a scenario of multiple outbursts of activity from the central engine. Our results are consistent with inverse-Compton modelling of radio and gamma-ray data that support a value for the lobe age of between 10 and 80 Myr
Swift J1727.8–1613 Has the Largest Resolved Continuous Jet Ever Seen in an X-Ray Binary
Multiwavelength polarimetry and radio observations of Swift J1727.8–1613 at the beginning of its recent 2023 outburst suggested the presence of a bright compact jet aligned in the north–south direction, which could not be confirmed without high-angular-resolution images. Using the Very Long Baseline Array and the Long Baseline Array, we imaged Swift J1727.8–1613 during the hard/hard-intermediate state, revealing a bright core and a large, two-sided, asymmetrical, resolved jet. The jet extends in the north–south direction, at a position angle of −0.60° ± 0.07° east of north. At 8.4 GHz, the entire resolved jet structure is ∼110(d/2.7kpc)/sini au long, with the southern approaching jet extending ∼80(d/2.7kpc)/sini au from the core, where d is the distance to the source and i is the inclination of the jet axis to the line of sight. These images reveal the most resolved continuous X-ray binary jet, and possibly the most physically extended continuous X-ray binary jet ever observed. Based on the brightness ratio of the approaching and receding jets, we put a lower limit on the intrinsic jet speed of β ≥ 0.27 and an upper limit on the jet inclination of i ≤ 74°. In our first observation we also detected a rapidly fading discrete jet knot 66.89 ± 0.04 mas south of the core, with a proper motion of 0.66 ± 0.05 mas hr−1, which we interpret as the result of a downstream internal shock or a jet–interstellar medium interaction, as opposed to a transient relativistic jet launched at the beginning of the outburst
The Murchison Widefield Array Commissioning Survey : A Low-Frequency Catalogue of 14,110 Compact Radio Sources over 6,100 Square Degrees
22 pages, 18 figures, accepted to PASAWe present the results of an approximately 6,100 square degree 104--196MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the Murchison Widefield Array Commissioning Survey (MWACS). The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 hPeer reviewedFinal Accepted Versio
Real-time imaging of density ducts between the plasmasphere and ionosphere
Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures
First Spectroscopic Imaging Observations of the Sun at Low Radio Frequencies with the Murchison Widefield Array Prototype
We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9– 201.6 MHz. Though our observing period is characterized as a period of “low” to “medium” activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
First spectroscopic imaging observations of the sun at low radio frequencies with the Murchison Widefield Array Prototype
We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low" to "medium" activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
The First Murchison Widefield Array low-frequency radio observations of cluster scale non-thermal emission: the case of Abell 3667
We present the first Murchison Widefield Array observations of the well-known cluster of galaxies Abell 3667 (A3667) between 105 and 241 MHz. A3667 is one of the best known examples of a galaxy cluster hosting a double radio relic and has been reported to contain a faint radio halo and bridge. The origin of radio haloes, relics and bridges is still unclear, however galaxy cluster merger seems to be an important factor. We clearly detect the north-west (NW) and south-east radio relics in A3667 and find an integrated flux density at 149 MHz of 28.1 ± 1.7 and 2.4 ± 0.1 Jy, respectively, with an average spectral index, between 120 and 1400 MHz, of −0.9 ± 0.1 for both relics. We find evidence of a spatial variation in the spectral index across the NW relic steepening towards the centre of the cluster, which indicates an ageing electron population. These properties are consistent with higher frequency observations. We detect emission that could be associated with a radio halo and bridge. However, due to the presence of poorly sampled large-scale Galactic emission and blended point sources we are unable to verify the exact nature of these features
The Phase II Murchison Widefield Array: Design overview
We describe the motivation and design details of the "Phase II" upgrade of the Murchison Widefield Array (MWA) radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the MWA in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing MWA core. These new tiles enhance the surface brightness sensitivity of the MWA and will improve the ability of the MWA to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ~3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u,v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of MWA continuum images. The upgrade retains all of the features that have underpinned the MWA's success (large field-of-view, snapshot image quality, pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies
Low-Frequency Observations of the Moon with the Murchison Widefield Array
A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system
- …