182 research outputs found

    The Maize Green Revolution in Kenya Revisited

    Get PDF
    The maize green revolution, which increased maize yields through the use of improved varieties and fertilizer, has stalled since the mid-eighties in Kenya. This paper examines whether the stagnation of yields continued in the 1990s in spite of the implementation of the maize liberalization policies by the Kenya Government. Analysis of farm level surveys from 1992 and 2002 indicates slight increases in the use of improved maize varieties and fertilizer, but a substantial decrease in the intensity of fertilizer use. The econometric analysis suggests that the intensity of fertilizer use has a major effect on yield. The use of improved maize varieties, however, did not affect yield, suggesting that there are local varieties for some areas that do as well as improved varieties. Research is needed to develop improved varieties for some areas, and also needed for the development of alternative affordable soil fertility measures.green revolution, maize, adoption, soil fertility, Kenya, Crop Production/Industries, International Development,

    Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment

    Full text link
    [EN] The logical separation of the data plane and the control plane of the network device conceptually defined by software-defined networking (SDN) creates many opportunities to create smart networking with better efficiency for network management and operation. SDN implementation over telecommunications (Telcos) and Internet service provider (ISP) networks is a challenging issue due to the lack of a high maturity level of SDN-based standards and several other critical factors that are considered during the real-time migration of existing legacy IPv4 networks. Different migration approaches have been studied; however, none of them seem to be close to realizing implementation. This paper implements the SDN-IP and Open Network Operating System (ONOS) SDN controller to migrate legacy IPv4 networks to multi-domain software-defined IPv6 (SoDIP6) networks and experimentally evaluate the viability of joint network migration in the ISP networks. We present results using extensive simulations for the suitable placement of the master ONOS controller during network migration by considering minimum control path latency using optimal path routing and the breadth first router replacement (BFR) technique. Our empirical analysis and evaluations show that the identification of the median router to attach the master controller and router migration planning using BFR give better results for carrier-grade legacy networks' migration to SoDIP6 networks.This research was partially funded by the Norwegian University of Science and Technology, Trondhiem, Norway (NTNU) under Sustainable Engineering Education Project (SEEP) financed by EnPE, University Grant Commission (grant-ID: FRG7475Engg01), Bhaktapur, Nepal, Nepal academy of Science and Technology (NAST), Kathmandu, Nepal, and U.S. National Science Foundation (NSF). The work of Danda B. Rawat was partly supported by the U.S. National Science Foundation (NSF) under grants CNS 1650831 and HRD 1828811. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the NSF. We are thankful to the ERASMUS+ KA107 project and the GRC lab team members at Universitat Politùcnica De Valùncia for the research support and facilitation.Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P. (2020). Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment. Electronics. 9(9):1-22. https://doi.org/10.3390/electronics9091454S12299Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Manzoni, P. (2020). Evolutionary gaming approach for decision making of Tier‐3 Internet service provider networks migration to SoDIP6 networks. International Journal of Communication Systems, 33(11). doi:10.1002/dac.4399Gu, D., Su, J., Xue, Y., Wang, D., Li, J., Luo, Z., & Yan, B. (2020). Modeling IPv6 adoption from biological evolution. Computer Communications, 158, 166-177. doi:10.1016/j.comcom.2020.02.081IPv6 Capability Measurement https://stats.labs.apnic.net/ipv6Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Keitsch, M. M. (2018). Joint Cost Estimation Approach for Service Provider Legacy Network Migration to Unified Software Defined IPv6 Network. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). doi:10.1109/cic.2018.00056Csikor, L., Szalay, M., Retvari, G., Pongracz, G., Pezaros, D. P., & Toka, L. (2020). Transition to SDN is HARMLESS: Hybrid Architecture for Migrating Legacy Ethernet Switches to SDN. IEEE/ACM Transactions on Networking, 28(1), 275-288. doi:10.1109/tnet.2019.2958762Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003Mostafaei, H., Lospoto, G., Di Lallo, R., Rimondini, M., & Di Battista, G. (2020). A framework for multi‐provider virtual private networks in software‐defined federated networks. International Journal of Network Management, 30(6). doi:10.1002/nem.2116Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Evolutionary Dynamics of Service Provider Legacy Network Migration to Software Defined IPv6 Network. Advances in Intelligent Systems and Computing, 245-257. doi:10.1007/978-3-030-19861-9_24Salsano, S., Ventre, P. L., Lombardo, F., Siracusano, G., Gerola, M., Salvadori, E., 
 Prete, L. (2016). Hybrid IP/SDN Networking: Open Implementation and Experiment Management Tools. IEEE Transactions on Network and Service Management, 13(1), 138-153. doi:10.1109/tnsm.2015.2507622Vissicchio, S., Tilmans, O., Vanbever, L., & Rexford, J. (2015). Central Control Over Distributed Routing. Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. doi:10.1145/2785956.2787497Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Risdianto, A. C., Tsai, P.-W., Ling, T. C., Yang, C.-S., & Kim, J. (2017). Enhanced Onos Sdn Controllers Deployment For Federated Multi-Domain Sdn-Cloud With Sd-Routing-Exchange. Malaysian Journal of Computer Science, 30(2), 134-153. doi:10.22452/mjcs.vol30no2.5Ventre, P. L., Salsano, S., Gerola, M., Salvadori, E., Usman, M., Buscaglione, S., 
 Snow, W. (2017). SDN-Based IP and Layer 2 Services with an Open Networking Operating System in the GÉANT Service Provider Network. IEEE Communications Magazine, 55(4), 71-79. doi:10.1109/mcom.2017.1600194SDN-IP Arhitecture https://wiki.onosproject.org/display/ONOS/SDN-IP+ArchitectureLee, H.-L., Liu, T.-L., & Chen, M. (2019). Deploying SDN-IP over Transnational Network Testbed. 2019 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW). doi:10.1109/icce-tw46550.2019.8991776Das, T., Sridharan, V., & Gurusamy, M. (2020). A Survey on Controller Placement in SDN. IEEE Communications Surveys & Tutorials, 22(1), 472-503. doi:10.1109/comst.2019.2935453Chen, W., Chen, C., Jiang, X., & Liu, L. (2018). Multi-Controller Placement Towards SDN Based on Louvain Heuristic Algorithm. IEEE Access, 6, 49486-49497. doi:10.1109/access.2018.2867931Qi, Y., Wang, D., Yao, W., Li, H., & Cao, Y. (2019). Towards Multi-Controller Placement for SDN Based on Density Peaks Clustering. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2019.8761814Lu, J., Zhang, Z., Hu, T., Yi, P., & Lan, J. (2019). A Survey of Controller Placement Problem in Software-Defined Networking. IEEE Access, 7, 24290-24307. doi:10.1109/access.2019.2893283Singh, A. K., Maurya, S., Kumar, N., & Srivastava, S. (2019). Heuristic approaches for the reliable SDN controller placement problem. Transactions on Emerging Telecommunications Technologies, 31(2). doi:10.1002/ett.3761Das, T., & Gurusamy, M. (2018). Resilient Controller Placement in Hybrid SDN/Legacy Networks. 2018 IEEE Global Communications Conference (GLOBECOM). doi:10.1109/glocom.2018.8647566Heller, B., Sherwood, R., & McKeown, N. (2012). The controller placement problem. ACM SIGCOMM Computer Communication Review, 42(4), 473-478. doi:10.1145/2377677.2377767SDN Control Plane Performance: Raising the Bar on SDN Performance, Scalability, and High Availability https://wiki.onosproject.org/download/attachments/13994369/Whitepaper-%20ONOS%20Kingfisher%20release%20performance.pdf?version=

    Migration cost optimization for service provider legacy network migration to software-defined IPv6 network

    Full text link
    This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P, Keitsch, MM. Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. Int J Network Mgmt. 2021; 31:e2145, which has been published in final form at https://doi.org/10.1002/nem.2145. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This paper studies a problem for seamless migration of legacy networks of Internet service providers to a software-defined networking (SDN)-based architecture along with the transition to the full adoption of the Internet protocol version 6 (IPv6) connectivity. Migration of currently running legacy IPv4 networks into such new approaches requires either upgrades or replacement of existing networking devices and technologies that are actively operating. The joint migration to SDN and IPv6 network is considered to be vital in terms of migration cost optimization, skilled human resource management, and other critical factors. In this work, we first present the approaches of SDN and IPv6 migration in service providers' networks. Then, we present the common concerns of IPv6 and SDN migration with joint transition strategies so that the cost associated with joint migration is minimized to lower than that of the individual migration. For the incremental adoption of software-defined IPv6 (SoDIP6) network with optimum migration cost, a greedy algorithm is proposed based on optimal path and the customer priority. Simulation and empirical analysis show that a unified transition planning to SoDIP6 network results in lower migration cost.U.S. National Science Foundation (NSF), Grant/Award Number: CNS 1650831 and HRD 1828811; ERASMUS+ KA107; Nepal Academy of Science and Technology (NAST); Norwegian University of Science and Technology; University Grant Commission (UGC), Nepal, Grant/Award Number: FRG/74_75/Engg-1Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P.; Keitsch, MM. (2021). Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. International Journal of Network Management. 31(4):1-24. https://doi.org/10.1002/nem.2145S124314APNIC.IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed April 22 2020.Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020.Rawat, D. B., & Reddy, S. R. (2017). Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Communications Surveys & Tutorials, 19(1), 325-346. doi:10.1109/comst.2016.2618874Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling network innovation in data center networks with software defined networking: A survey. Journal of Network and Computer Applications, 94, 33-49. doi:10.1016/j.jnca.2017.07.004Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., 
 McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011Gumaste, A., Sharma, V., Kakadia, D., Yates, J., Clauberg, A., & Voltolini, M. (2017). SDN Use Cases for Service Provider Networks: Part 2. IEEE Communications Magazine, 55(4), 62-63. doi:10.1109/mcom.2017.7901478Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Shah, J. L., Bhat, H. F., & Khan, A. I. (2019). Towards IPv6 Migration and Challenges. International Journal of Technology Diffusion, 10(2), 83-96. doi:10.4018/ijtd.2019040105Rojas, E., Doriguzzi-Corin, R., Tamurejo, S., Beato, A., Schwabe, A., Phemius, K., & Guerrero, C. (2018). Are We Ready to Drive Software-Defined Networks? A Comprehensive Survey on Management Tools and Techniques. ACM Computing Surveys, 51(2), 1-35. doi:10.1145/3165290Contreras, L. M., Doolan, P., LĂžnsethagen, H., & LĂłpez, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259-3306. doi:10.1109/comst.2018.2837161Audi Marc Amjad A.The Advancement in Information and Communication Technologies (ICT) and Economic Development: A Panel Analysis. MPRA.https://mpra.ub.uni-muenchen.de/93476/. Published 2019. Accessed November 29 2019.Main, A., Zakaria, N. A., & Yusof, R. (2015). Organisation Readiness Factors Towards IPv6 Migration: Expert Review. Procedia - Social and Behavioral Sciences, 195, 1882-1889. doi:10.1016/j.sbspro.2015.06.427Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Baral, D. S. (2019). Affordable Broadband with Software Defined IPv6 Network for Developing Rural Communities. Applied System Innovation, 3(1), 4. doi:10.3390/asi3010004Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027Dell, P. (2018). On the dual-stacking transition to IPv6: A forlorn hope? Telecommunications Policy, 42(7), 575-581. doi:10.1016/j.telpol.2018.04.005GilliganRE NordmarkE GilliganRE et alBasic Transition Mechanisms for IPv6 Hosts and Routers.2000.Cui, Y., Dong, J., Wu, P., Wu, J., Metz, C., Lee, Y. L., & Durand, A. (2013). Tunnel-Based IPv6 Transition. IEEE Internet Computing, 17(2), 62-68. doi:10.1109/mic.2012.63BlanchetM ParentF.IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP).2010.HuitemaC.Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs) RFC 4380.2006.CarpenterB MooreK.Connection of IPv6 domains via IPv4 clouds.2001.JungC CarpenterBE.Transmission of IPv6 over IPv4 Domains without Explicit Tunnels.1999.CuiY WuJ LeeY WuP VautrinO.Public IPv4‐over‐IPv6 access Network2013.CuiY SunQ LeeYL TsouT FarrerI BoucadairM.Lightweight 4over6: an extension to the dual‐stack lite Architecture2015.TemplinF GleesonT TalwarM ThalerD.Intra‐Site Automatic Tunnel Addressing Protocol (ISATAP) RFC 5214.2008.DurandA DromsR WoodyattJ LeeY.RFC 6333: Dual‐Stack Lite Broadband Deployments Following IPv4 Exhaustion. IETF Aug.2011.BaoC DecW LiX TroanO MatsushimaS MurakamiT.Mapping of Address and Port with Encapsulation (MAP‐E). IETF Internet Draft.2015.TownsleyW TroanO.IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)‐‐Protocol Specification.2010.ChenM ChenG JiangS LeeY DespresR PennoR.IPv4 Residual Deployment via IPv6‐A Stateless Solution (4rd).2015.WuP CuiY XuM et alPET: Prefixing encapsulation and translation for IPv4‐IPv6 coexistence. In: 2010IEEE Global Telecommunications Conference GLOBECOM2010. 2010:1–5.LiX BaoC ChenM ZhangH WuJ.IVI translation design and deployment for the IPv4/IPv6 coexistence and transition.IETF RFC6219 Internet Eng Task Force Fremont CA.2011.Bagnulo, M., Garcia-Martinez, A., & Van Beijnum, I. (2012). The NAT64/DNS64 tool suite for IPv6 transition. IEEE Communications Magazine, 50(7), 177-183. doi:10.1109/mcom.2012.6231295BagnuloM SullivanA MatthewsP VanBeijnumI.DNS64: DNS extensions for network address translation from IPv6 clients to IPv4 servers RFC 6147.2011.LiuD DengH.NAT46 Considerations.2010.MawatariM KawashimaM ByrneC.464XLAT: Combination of stateful and stateless translation. IETF Internet‐Draft.2013.PerreaultS YamagataI MiyakawaS NakagawaA.Common Requirements for Carrier‐Grade NATs (CGNs) RFC6888.2013.YamaguchiJ ShirasakiY NakagawaA AshidaH.Nat444 addressing models. Req Comments Draft Internet Eng Task Force.2012.ChenG CaoZ XieC BinetD.NAT64 Deployment Options and Experience RFC 7269.2014.LiX BaoC DecW TroanO MatsushimaS MurakamiT.Mapping of Address and Port using Translation (MAP‐T) RFC 7599. IETF Internet Draft.2013.Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200Hernandez-Valencia, E., Izzo, S., & Polonsky, B. (2015). How will NFV/SDN transform service provider opex? IEEE Network, 29(3), 60-67. doi:10.1109/mnet.2015.7113227BogineniK et alThe Open Networking Lab (ON.Lab). Introducing ONOS—a SDN network operating system for Service Providers.White Pap.2014;1:14.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdfTR‐506 O ONF TR‐506.SDN Migration Considerations and Use Cases.2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdfRisdiantoAC LingTC TsaiP YangC KimJ.Leveraging open‐source software for federated multisite SDN‐cloud playground. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft). ;2016:423‐427.https://doi.org/10.1109/NETSOFT.2016.7502479GalizaH SchwarzM BezerraJ IbarraJ.Moving an ip network to sdn: a global use case deployment experience at amlight. In:Anais Do WPEIF2016Workshop de Pesquisa Experimental Da Internet Do Futuro: 15.LevinD CaniniM SchmidS SchaffertF Feldmann A.Panopticon: Reaping the Benefits of Incremental {SDN} Deployment in Enterprise Networks. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). ;2014:333–345.Vissicchio, S., Tilmans, O., Vanbever, L., & Rexford, J. (2015). Central Control Over Distributed Routing. ACM SIGCOMM Computer Communication Review, 45(4), 43-56. doi:10.1145/2829988.2787497Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., & Hu, S. (2019). A Survey of Deployment Solutions and Optimization Strategies for Hybrid SDN Networks. IEEE Communications Surveys & Tutorials, 21(2), 1483-1507. doi:10.1109/comst.2018.2871061Csikor, L., Szalay, M., Retvari, G., Pongracz, G., Pezaros, D. P., & Toka, L. (2020). Transition to SDN is HARMLESS: Hybrid Architecture for Migrating Legacy Ethernet Switches to SDN. IEEE/ACM Transactions on Networking, 28(1), 275-288. doi:10.1109/tnet.2019.2958762Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Manzoni, P. (2020). Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment. Electronics, 9(9), 1454. doi:10.3390/electronics9091454HongDK MaY BanerjeeS MaoZM.Incremental deployment of SDN in hybrid enterprise and ISP networks. In: Proceedings of the Symposium on SDN Research. 2016:1‐7.Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., 
 Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532Goransson, P., & Black, C. (2014). SDN in the Data Center. Software Defined Networks, 145-167. doi:10.1016/b978-0-12-416675-2.00007-3AT & T.Introducing the “User Defined Network Cloud”.https://about.att.com/newsroom/introducing_the_user_defined_network_cloud.html. Published 2014. Accessed August 12 2018.CsikorL TokaL SzalayM PongrĂĄczG PezarosDP RĂ©tvĂĄriG.HARMLESS: Cost‐effective transitioning to SDN for small enterprises. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops. ; 2018:1–9.ON.LAB.Driving SDN Adoption in Service Provider Networks.2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdfBabikerH NikolovaI ChittimaneniKKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:LISA'11 Proceedings of the 25th International Conference on Large Installation System Administration 2011:10.ParkHW HwangISLS LeeJR.Study on the sustainable migration to software defined network for nation‐wide R&E network.Proc—201610th Int Conf Innov Mob Internet Serv Ubiquitous Comput IMIS2016.2016:392‐396.https://doi.org/10.1109/IMIS.2016.117CariaM JukanA HoffmannM.A performance study of network migration to SDN‐enabled traffic engineering. In:2013 IEEE Global Communications Conference (GLOBECOM); 2013:1391‐1396.Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003LENCSE, G., & KADOBAYASHI, Y. (2019). Comprehensive Survey of IPv6 Transition Technologies: A Subjective Classification for Security Analysis. IEICE Transactions on Communications, E102.B(10), 2021-2035. doi:10.1587/transcom.2018ebr0002NIST.Technical and Economic Assessment of Internet Protocol Verson 6 9IPv6.2006.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912231NIST.IPv6 Economic Impact Assessment. NY;2005.https://www.nist.gov/system/files/documents/director/planning/report05-2.pdfDasT CariaM JukanA HoffmannM.A Techno‐economic Analysis of Network Migration to Software‐Defined Networking.2013.http://arxiv.org/abs/1310.0216Das, T., Drogon, M., Jukan, A., & Hoffmann, M. (2014). Study of Network Migration to New Technologies Using Agent-Based Modeling Techniques. Journal of Network and Systems Management, 23(4), 920-949. doi:10.1007/s10922-014-9327-3Yuan, T., Huang, X., Ma, M., & Zhang, P. (2017). Migration to software-defined networks: The customers’ view. China Communications, 14(10), 1-11. doi:10.1109/cc.2017.8107628TĂŒrkS LiuY RadekeR LehnertR.Network migration optimization using genetic algorithms. In: Meeting of the European Network of Universities and Companies in Information and Communication Engineering. 2012:112–123.TĂŒrk, S. (2014). Network migration optimization using meta-heuristics. AEU - International Journal of Electronics and Communications, 68(7), 584-586. doi:10.1016/j.aeue.2014.04.005TĂŒrkS RadekeR LehnertR.Network migration using ant colony optimization. In:2010 9th Conference of Telecommunication Media and Internet; 2010:1–6.TurkS LiuH RadekeR LehnertR.Improving network migration optimization utilizing memetic algorithms. In: Global Information Infrastructure Symposium—GIIS 2013. 2013:1‐8.https://doi.org/10.1109/GIIS.2013.6684345ShayaniD Mas MachucaC JagerM GladischA.Cost analysis of the service migration problem between communication platforms. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium. 2008:734‐737.https://doi.org/10.1109/NOMS.2008.4575201Shayani, D., Mas Machuca, C., & Jager, M. (2010). A techno-economic approach to telecommunications: the case of service migration. IEEE Transactions on Network and Service Management, 7(2), 96-106. doi:10.1109/tnsm.2010.06.i8p0297Naudts, B., Kind, M., Verbrugge, S., Colle, D., & Pickavet, M. (2015). How can a mobile service provider reduce costs with software-defined networking? International Journal of Network Management, 26(1), 56-72. doi:10.1002/nem.1919Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Evolutionary Dynamics of Service Provider Legacy Network Migration to Software Defined IPv6 Network. Advances in Intelligent Systems and Computing, 245-257. doi:10.1007/978-3-030-19861-9_24BezrukVM ChebotarovaD V KaliuzhniyNM QiangG YuZ.Optimization and mathematical modeling of communication networks.Monogr—Open Electron Arch Kharkov Natl Univ Radio Electron.2019.http://openarchive.nure.ua/handle/document/10121Omantek. Open‐AudIT: Device Information Management System.https://www.open-audit.org/about.phpNet. Inventory Advisor.Network Inventory Software.https://www.network-inventory-advisor.com/. Accessed December 3 2019.OCS‐Inventory. OCSING: Open Inventory Next Generation.https://ocsinventory-ng.org/?lang=en. Accessed December 3 2019.Group MW. Migration Use Cases and Methods Migration Working Group Open Networking Foundation Use Cases and Migration Methods 2.www.opennetworking.orgSohn, S. Y., & Kim, Y. (2011). Economic Evaluation Model for International Standardization of Correlated Technologies. IEEE Transactions on Engineering Management, 58(2), 189-198. doi:10.1109/tem.2010.2058853ONF TS‐006.OpenFlow 1.3 Switch Specification.2012.https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdfMahlooM MontiP ChenJ WosinskaL.Cost modeling of backhaul for mobile networks. In: 2014 IEEE International Conference on Communications Workshops (ICC). 2014:397–402.https://doi.org/10.1109/ICCW.2014.6881230DawadiBR RawatDB JoshiSR KeitschMM.Joint cost estimation approach for service provider legacy network migration to unified software defined IPv6 network. In: Proceedings—4th IEEE International Conference on Collaboration and Internet Computing CIC 2018.2018.https://doi.org/10.1109/CIC.2018.00056FengT BiJ.OpenRouteFlow: Enable legacy router as a software‐defined routing service for hybrid SDN. In: 2015 24th International Conference on Computer Communication and Networks (ICCCN).2015:1–8.MachucaCM EberspaecherJ JĂ€gerM GladischA.Service migration cost modeling. In: 2007 ITG Symposium on Photonic Networks. ; 2007:1–5.Poularakis, K., Iosifidis, G., Smaragdakis, G., & Tassiulas, L. (2019). Optimizing Gradual SDN Upgrades in ISP Networks. IEEE/ACM Transactions on Networking, 27(1), 288-301. doi:10.1109/tnet.2018.2890248GalĂĄn-JimĂ©nez, J. (2017). Legacy IP-upgraded SDN nodes tradeoff in energy-efficient hybrid IP/SDN networks. Computer Communications, 114, 106-123. doi:10.1016/j.comcom.2017.10.010Vizarreta, P., Trivedi, K., Helvik, B., Heegaard, P., Blenk, A., Kellerer, W., & Mas Machuca, C. (2018). Assessing the Maturity of SDN Controllers With Software Reliability Growth Models. IEEE Transactions on Network and Service Management, 15(3), 1090-1104. doi:10.1109/tnsm.2018.2848105Salsano, S., Ventre, P. L., Lombardo, F., Siracusano, G., Gerola, M., Salvadori, E., 
 Prete, L. (2016). Hybrid IP/SDN Networking: Open Implementation and Experiment Management Tools. IEEE Transactions on Network and Service Management, 13(1), 138-153. doi:10.1109/tnsm.2015.2507622DasT GurusamyM.Resilient Controller Placement in Hybrid SDN/Legacy Networks. In: 2018 IEEE Global Communications Conference (GLOBECOM). 2018:1–7.DasT GurusamyM.INCEPT: INcremental ControllEr PlacemenT in software defined networks. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN). 2018:1–6

    Unsupervised Monocular Depth Reconstruction of Non-Rigid Scenes

    Get PDF
    Monocular depth reconstruction of complex and dynamic scenes is a highly challenging problem. While for rigid scenes learning-based methods have been offering promising results even in unsupervised cases, there exists little to no literature addressing the same for dynamic and deformable scenes. In this work, we present an unsupervised monocular framework for dense depth estimation of dynamic scenes, which jointly reconstructs rigid and non-rigid parts without explicitly modelling the camera motion. Using dense correspondences, we derive a training objective that aims to opportunistically preserve pairwise distances between reconstructed 3D points. In this process, the dense depth map is learned implicitly using the as-rigid-as-possible hypothesis. Our method provides promising results, demonstrating its capability of reconstructing 3D from challenging videos of non-rigid scenes. Furthermore, the proposed method also provides unsupervised motion segmentation results as an auxiliary output

    The study of Cutaneous Lupus Erythematosus Disease Area and Severity Index in Indian patients with systemic lupus erythematosus

    Get PDF
    Abstract The Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) is a newly described tool used to assess the activity of and damage caused by cutaneous lupus erythematosus (CLE). There is a paucity of data on CLASI from the Indian subcontinent. We sought to determine the applicability of CLASI in specific lesions of CLE in patients with systemic lupus erythematosus (SLE) attending a tertiary care hospital in India. In this prospective, cross-sectional study, 93 patients of SLE with cutaneous lesions were recruited. CLASI activity and damage scores of lupus erythematosus (LE)-specific skin lesions were done in 75 patients with SLE. The mean CLASI activity score was 15.4 AE 9.4 (range 0-39) and the mean damage score was 6.87 AE 7.75 (range 0-30). Higher mean CLASI activity scores were seen in patients with a combination of acute, subacute and chronic CLE and in those with widespread lesions. Patients with longstanding disease and long duration of skin lesions had higher damage scores. This study shows that CLASI is an effective tool to assess cutaneous activity of LE-specific lesions, and the damage caused by them, in Indian patients. Lupus (2011) 20, 1510-1517

    Enhanced dissolution efficiency of tamoxifen combined with methacrylate copolymers in amorphous solid dispersions

    Get PDF
    Amorphous solid dispersions (SDs) containing poorly soluble tamoxifen dispersed in a meth(acrylate) copolymer combination were proposed as a controlled release system. The objective of this work was to investigate the characteristics and performance of the tamoxifen–polymer mixture and evaluate the changes in functionality through a supersaturating dissolution study condition while comparing it to a physical mixture at a fixed drug-loading proportion. Two polymers, Eudragit¼ L 100 and Eudragit¼ RL 100, were used to prepare SDs with a 1:1 polymer ratio, containing 10%, 20%, or 30% (wt/wt%) of tamoxifen, by the solvent evaporation method. A physical mixture containing 30% of tamoxifen was also prepared for comparison. SDs were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy. Dissolution tests were conducted under non-sink conditions to verify the occurrence of drug recrystallization upon its release. Solid-state characterizations confirmed that the drug was in the amorphous state within the polymeric matrix. Tamoxifen release in an acidic medium was mainly affected by the increase in drug concentration caused by the possible loss of interactions that characterize the main polymer functionalities. At pH 7.4, supersaturation was slowly achieved while also contributing to the increase in the kinetic solubility of the drug. The physical mixture demonstrated the best overall performance, suggesting that the polymeric interactions may have negatively affected the drug release. The combination of polymers in the composing SD proved to be a promising strategy to tailor the delivery of poorly soluble drugs. Our study highlights important information on the behavior of tamoxifen as a poorly soluble drug in supersaturating dissolution conditions while released from SD systems.This work was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil), by the Portuguese Science and Technology Foundation (FCT/MCT), and European Funds (PRODER/COMPETE) under the projects M-ERA-NET/0004/2015 and UIDB/04469/2020 (strategic fund) and co-financed by FEDER under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes

    Get PDF
    Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood–brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation

    Systemic manifestations of primary Sjögren's syndrome out of the ESSDAI classification: prevalence and clinical relevance in a large international, multi-ethnic cohort of patients

    Get PDF
    OBJECTIVES: To analyse the frequency and characterise the systemic presentation of primary Sjögren’s syndrome (SS) out of the ESSDAI classification in a large international, multi-ethnic cohort of patients. // METHODS: The Big Data Sjögren Project Consortium is an international, multicentre registry based on world-wide data-sharing and cooperative merging of pre-existing clinical SS databases from leading centres in clinical research in SS from the five continents. A list of 26 organ-by-organ systemic features not currently included in the ESSDAI classification was defined according to previous studies; these features were retrospectively recorded. // RESULTS: Information about non-ESSDAI features was available in 6331 patients [5,917 female, mean age at diagnosis 52 years, mainly White (86.3%)]. A total of 1641 (26%) patients had at least one of the ESSDAI systemic features. Cardiovascular manifestations were the most frequent organ-specific group of non-ESSDAI features reported in our patients (17% of the total cohort), with Raynaud’s phenomenon being reported in 15%. Patients with systemic disease due to non-ESSDAI features had a lower frequency of dry mouth (90.7% vs. 94.1%, p<0.001) and positive minor salivary gland biopsy (86.7% vs. 89%, p=0.033), a higher frequency of anti-Ro/SSA (74.7% vs. 68.7%, p<0.001), anti-La/SSB antibodies (44.5% vs. 40.4%, p=0.004), ANA (82.7% vs. 79.5%, p=0.006), low C3 levels (17.4% vs. 9.7%, p<0.001), low C4 levels (14.4% vs. 9.6%, p<0.001), and positive serum cryoglobulins (8.6% vs. 5.5%, p=0.001). Systemic activity measured by the ESSDAI, clinESSDAI and DAS was higher in patients with systemic disease out of the ESSDAI in comparison with those without these features (p<0.001 for all comparisons). // CONCLUSIONS: More than a quarter of patients with primary SS may have systemic manifestations not currently included in the ESSDAI classification, with a wide variety of cardiovascular, digestive, pulmonary, neurological, ocular, ENT (ear, nose, and throat), cutaneous and urological features that increase the scope of the systemic phenotype of the disease. However, the individual frequency of each of these non-ESSDAI features was very low, except for Raynaud’s phenomenon

    How immunological profle drives clinical phenotype of primary Sjögren’s syndrome at diagnosis: analysis of 10,500 patients (Sjögren Big Data Project)

    Get PDF
    To evaluate the influence of the main immunological markers on the disease phenotype at diagnosis in a large international cohort of patients with primary SjögrenÂŽs syndrome (SjS).METHODS:The Big Data Sjögren Project Consortium is an international, multicentre registry created in 2014. As a first step, baseline clinical information from leading centres on clinical research in SjS of the 5 continents was collected. The centres shared a harmonised data architecture and conducted cooperative online efforts in order to refine collected data under the coordination of a big data statistical team. Inclusion criteria were the fulfillment of the 2002 classification criteria. Immunological tests were carried out using standard commercial assays.RESULTS:By January 2018, the participant centres had included 10,500 valid patients from 22 countries. The cohort included 9,806 (93%) women and 694 (7%) men, with a mean age at diagnosis of primary SjS of 53 years, mainly White (78%) and included from European countries (71%). The frequency of positive immunological markers at diagnosis was 79.3% for ANA, 73.2% for anti-Ro, 48.6% for RF, 45.1% for anti- La, 13.4% for low C3 levels, 14.5% for low C4 levels and 7.3% for cryoglobulins. Positive autoantibodies (ANA, Ro, La) correlated with a positive result in salivary gland biopsy, while hypocomplementaemia and especially cryoglo-bulinaemia correlated with systemic activity (mean ESSDAI score of 17.7 for cryoglobulins, 11.3 for low C3 and 9.2 for low C4, in comparison with 3.8 for negative markers). The immunological markers with a great number of statistically-significant associations (p<0.001) in the organ-by-organ ESS- DAI evaluation were cryoglobulins (9 domains), low C3 (8 domains), anti-La (7 domains) and low C4 (6 domains).CONCLUSIONS:We confirm the strong influence of immunological markers on the phenotype of primary SjS at diagnosis in the largest multi-ethnic international cohort ever analysed, with a greater influence for cryoglobulinaemic-related markers in comparison with Ro/La autoantibodies and ANA. Immunological patterns play a central role in the phenotypic expression of the disease already at the time of diagnosis, and may guide physicians to design a specific personalised management during the follow-up of patients with primary SjS.Fil: Brito ZerĂłn, Pilar. Hospital Sanitas CIMA; España. Universidad de Barcelona; EspañaFil: Acar Denizli, Nihan. Mimar Sinan Fine Arts University; TurquĂ­aFil: Ng, Wan Fai. University of Newcastle; Reino UnidoFil: Zeher, Margit. University of Debrecen; HungrĂ­aFil: Rasmussen, Astrid. Oklahoma Medical Research Foundation; Estados UnidosFil: Mandl, Thomas. Lund University; SueciaFil: Seror, Raphaele. UniversitĂ© Paris Sud; FranciaFil: Xiaolin, Li. Anhui Provincial Hospital; ChinaFil: Baldini, Chiara. UniversitĂ  degli Studi di Pisa; ItaliaFil: Gottenberg, Jaques. UniversitĂ© de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Danda, Debashish. Christian Medical College & Hospital; IndiaFil: Quartuccio, Luca. University Hospital “Santa MarĂ­a della Misericordia”; ItaliaFil: Priori, Roberta. UniversitĂ  degli Studi di Roma "La Sapienza"; ItaliaFil: Hernandez Molina, Gabriela. Instituto Nacional de Ciencias MĂ©dicas y NutriciĂłn Salvador ZubirĂĄn; MĂ©xicoFil: Armagan, Berkan. Hacettepe University. Faculty of Medicine.Department of Internal Medicine; TurquĂ­aFil: Kruize, Aike. University Medical Center Utrecht; PaĂ­ses BajosFil: Kwok, Seung Ki. The Catholic University of Korea; Corea del SurFil: Kvarnström, Marika. Karolinska University Hospital.Department of Medicine.Unit of Rheumatology. Karolinska Institutet ; SueciaFil: Praprotnik, Sonja. University Medical Centre; EsloveniaFil: Sene, Damien. UniversitĂ© Paris Diderot - Paris 7; FranciaFil: Bartoloni, Elena. UniversitĂ  di Perugia; ItaliaFil: Solans, R.. Hospital Vall d’Hebron; ItaliaFil: Rischmueller, M.. University of Western Australia; AustraliaFil: Suzuki, Y.. Kanazawa University Hospital; JapĂłnFil: Isenberg, D. A.. University College London; Estados UnidosFil: Valim, V.. Federal University of EspĂ­rito Santo; BrasilFil: Wiland, P.. Wroclaw Medical Hospital; PoloniaFil: Nordmark, G.. Uppsala Universitet; SueciaFil: Fraile, G.. Hospital RamĂłn y Cajal; EspañaFil: Retamozo, Maria Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud. Universidad Nacional de CĂłrdoba. Instituto de Investigaciones en Ciencias de la Salud; Argentina. Hospital Privado Centro Medico de CĂłrdoba; Argentina; Argentina. Instituto Universitario de Ciencias BiomĂ©dicas de CĂłrdoba; Argentin
    • 

    corecore