88 research outputs found

    Statistics of Lyapunov exponent in one-dimensional layered systems

    Full text link
    Localization of acoustic waves in a one dimensional water duct containing many randomly distributed air filled blocks is studied. Both the Lyapunov exponent and its variance are computed. Their statistical properties are also explored extensively. The results reveal that in this system the single parameter scaling is generally inadequate no matter whether the frequency we consider is located in a pass band or in a band gap. This contradicts the earlier observations in an optical case. We compare the results with two optical cases and give a possible explanation of the origin of the different behaviors.Comment: 6 pages revtex file, 6 eps figure

    Ferromagnetism in the Strong Hybridization Regime of the Periodic Anderson Model

    Full text link
    We determine exactly the ground state of the one-dimensional periodic Anderson model (PAM) in the strong hybridization regime. In this regime, the low energy sector of the PAM maps into an effective Hamiltonian that has a ferromagnetic ground state for any electron density between half and three quarters filling. This rigorous result proves the existence of a new magnetic state that was excluded in the previous analysis of the mixed valence systems.Comment: Accepted in Phys. Rev.

    Effects of In-Plane Impurity Substitution in Sr2RuO4

    Full text link
    We report comparative substitution effects of nonmagnetic Ti^(4+) and magnetic Ir^(4+) impurities for Ru^(4+) in the spin-triplet superconductor Sr2RuO4. We found that both impurities suppress the superconductivity completely at a concentration of approximately 0.15%, reflecting the high sensitivity to translational symmetry breaking in Sr2RuO4. In addition, a rapid enhancement of residual resistivity is in quantitative agreement with unitarity-limit scattering. Our result suggests that both nonmagnetic and magnetic impurities in Sr2RuO4 act as strong potential scatterers, similar to the nonmagnetic Zn^(2+) impurity in the high-Tc cuprates.Comment: 4 pages, 2 figures. submitted to Journal of the Physical Society of Japa

    A Phase transition in acoustic propagation in 2D random liquid media

    Get PDF
    Acoustic wave propagation in liquid media containing many parallel air-filled cylinders is considered. A self-consistent method is used to compute rigorously the propagation, incorporating all orders of multiple scattering. It is shown that under proper conditions, multiple scattering leads to a peculiar phase transition in acoustic propagation. When the phase transition occurs, a collective behavior of the cylinders appears and the acoustic waves are confined in a region of space in the neighborhood of the transmission source. A novel phase diagram is used to describe such phase transition. Originally submitted on April 6, 99.Comment: 5 pages, 5 color figure

    Localization in a random phase-conjugating medium

    Full text link
    We theoretically study reflection and transmission of light in a one-dimensional disordered phase-conjugating medium. Using an invariant imbedding approach a Fokker-Planck equation for the distribution of the probe light reflectance and expressions for the average probabilities of reflection and transmission are derived. A new crossover length scale for localization of light is found, which depends on the competition between phase conjugation and disorder. For weak disorder, our analytical results are in good agreement with numerical simulations.Comment: RevTex, 4 pages, 4 figure

    Propagation inhibition and wave localization in a 2D random liquid medium

    Full text link
    Acoustic propagation and scattering in water containing many parallel air-filled cylinders is studied. Two situations are considered and compared: (1) wave propagating through the array of cylinders, imitating a traditional experimental setup, and (2) wave transmitted from a source located inside the ensemble. We show that waves can be blocked from propagation by disorders in the first scenario, but the inhibition does not necessarily imply wave localization. Furthermore, the results reveal the phenomenon of wave localization in a range of frequencies.Comment: Typos in Fiures are correcte

    Quasi Two-dimensional Transfer of Elastic Waves

    Full text link
    A theory for multiple scattering of elastic waves is presented in a random medium bounded by two ideal free surfaces, whose horizontal size is infinite and whose transverse size is smaller than the mean free path of the waves. This geometry is relevant for seismic wave propagation in the Earth crust. We derive a time-dependent, quasi-2D radiative transfer equation, that describes the coupling of the eigenmodes of the layer (surface Rayleigh waves, SH waves, and Lamb waves). Expressions are found that relate the small-scale fluctuations to the life time of the modes and to their coupling rates. We discuss a diffusion approximation that simplifies the mathematics of this model significantly, and which should apply at large lapse times. Finally, coherent backscattering is studied within the quasi-2D radiative transfer equation for different source and detection configurations.Comment: REVTeX, 36 pages with 10 figures. Submitted to Phys. Rev.

    Anomalous Low Temperature Behavior of Superconducting Nd(1.85)Ce(0.15)CuO(4-y)

    Full text link
    We have measured the temperature dependence of the in-plane London penetration depth lambda(T) and the maximum Josephson current Ic(T) using bicrystal grain boundary Josephson junctions of the electron-doped cuprate superconductor Nd(1.85)Ce(0.15)CuO(4-y). Both quantities reveal an anomalous temperature dependence below about 4 K. In contrast to the usual monotonous decrease (increase) of lambda(T) (Ic(T)) with decreasing temperature, lambda(T) and Ic(T) are found to increase and decrease, respectively, with decreasing temperature below 4 K resulting in a non-monotonous overall temperature dependence. This anomalous behavior was found to be absent in analogous measurements performed on Pr(1.85)Ce(0.15)CuO(4-y). From this we conclude that the anomalous behavior of Nd(1.85)Ce(0.15)CuO(4-y) is caused by the presence of the Nd3+ paramagnetic moments. Correcting the measured lambda(T) dependence of Nd(1.85)Ce(0.15)CuO(4-y) for the temperature dependent susceptibility due to the Nd moments, an exponential dependence is obtained indicating isotropic s-wave pairing. This result is fully consistent with the lambda(T) dependence measured for Pr(1.85)Ce(0.15)CuO(4-y).Comment: 4 pages including 4 figures, to appear in Phys. Rev. Let

    Upward curvature of the upper critical field in the Boson--Fermion model

    Full text link
    We report on a non-conventional temperature behavior of the upper critical field (Hc2(T)H_{c2}(T)) which is found for the Boson-Fermion (BF) model. We show that the BF model properly reproduces two crucial features of the experimental data obtained for high-TcT_c superconductors: Hc2(T)H_{c2}(T) does not saturate at low temperatures and has an upward curvature. Moreover, the calculated upper critical field fits very well the experimental results. This agreement holds also for overdoped compounds, where a purely bosonic approach is not applicable.Comment: 4 pages, 3 figures, revte

    Controlling the numerical Cerenkov instability in PIC simulations using a customized finite difference Maxwell solver and a local FFT based current correction

    Get PDF
    In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 direction). We show that this eliminates the main NCI modes with moderate broken vertical bar k(1)broken vertical bar, while keeps additional main NCI modes well outside the range of physical interest with higher broken vertical bar k(1)broken vertical bar. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along (1) over bar which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.info:eu-repo/semantics/submittedVersio
    • 

    corecore