1,472 research outputs found

    Spatially resolved electrochemistry in ionic liquids : surface structure effects on triiodide reduction at platinum electrodes

    Get PDF
    Understanding the relationship between electrochemical activity and electrode structure is vital for improving the efficiency of dye-sensitized solar cells. Here, the reduction of triiodide to iodide in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) room temperature ionic liquid (RTIL) is investigated on polycrystalline platinum using scanning electrochemical cell microscopy (SECCM) and correlated to the crystallographic orientation from electron backscatter diffraction (EBSD). Although the rate determining step in all grains was the first electron transfer, significant grain-dependent variations in activity were revealed, with grains with a dominant (110) crystallographic character exhibiting higher catalytic activity compared to those with a major (100) orientation. The SECCM technique is demonstrated to resolve heterogeneity in activity, highlighting that methods incorporating polycrystalline electrodes miss vital details for understanding and optimizing electrocatalysts. An additional advantage of the SECCM over single-crystal techniques is its ability to probe high index facets

    How does the entropy/information bound work ?

    Full text link
    According to the universal entropy bound, the entropy (and hence information capacity) of a complete weakly self-gravitating physical system can be bounded exclusively in terms of its circumscribing radius and total gravitating energy. The bound's correctness is supported by explicit statistical calculations of entropy, gedanken experiments involving the generalized second law, and Bousso's covariant holographic bound. On the other hand, it is not always obvious in a particular example how the system avoids having too many states for given energy, and hence violating the bound. We analyze in detail several purported counterexamples of this type (involving systems made of massive particles, systems at low temperature, systems with high degeneracy of the lowest excited states, systems with degenerate ground states, or involving a particle spectrum with proliferation of nearly massless species), and exhibit in each case the mechanism behind the bound's efficacy.Comment: LaTeX, 10 pages. Contribution to the special issue of Foundation of Physics in honor of Asher Peres; C. Fuchs and A. van der Merwe, ed

    On the Nature of Andromeda IV

    Get PDF
    Lying at a projected distance of 40' or 9 kpc from the centre of M31, Andromeda IV is an enigmatic object first discovered during van den Bergh's search for dwarf spheroidal companions to M31. Being bluer, more compact and higher surface brightness than other known dwarf spheroidals, it has been suggested that And IV is either a relatively old `star cloud' in the outer disk of M31 or a background dwarf galaxy. We present deep HST WFPC2 observations of And IV and the surrounding field which, along with ground-based long-slit spectroscopy and Halpha imagery, are used to decipher the true nature of this puzzling object. We find compelling evidence that And IV is a background galaxy seen through the disk of M31. The moderate surface brightness (SB(V)~24), very blue colour (V-I<~0.6), low current star formation rate (~0.001 solar mass/yr) and low metallicity (~10% solar) reported here are consistent with And IV being a small dwarf irregular galaxy, perhaps similar to Local Group dwarfs such as IC 1613 and Sextans A. Although the distance to And IV is not tightly constrained with the current dataset, various arguments suggest it lies in the range 5<~D<~8 Mpc, placing it well outside the confines of the Local Group. It may be associated with a loose group of galaxies, containing major members UGC 64, IC 1727 and NGC 784. We report an updated position and radial velocity for And IV.Comment: 26 pages, LaTex with 9 figures (including 6 jpg plates). Accepted for publication in A

    Scanning electrochemical cell microscopy : a versatile method for highly localised corrosion related measurements on metal surfaces

    Get PDF
    The development of tools that can probe corrosion related phenomena at the (sub)microscale is recognized to be increasingly important in order to understand the surface structural factors (grain orientation, inclusions etc.) that control the (electro)chemical stability (corrosion susceptibility, pitting, passivity etc.) of metal surfaces. Herein we consider the application of scanning electrochemical cell microscopy (SECCM), a relatively new member of the electrochemical droplet cell (EDC) family, for corrosion research and demonstrate the power of this technique for resolving structure and activity at the (sub)microscale. Hundreds of spatially-resolved (2 μm droplet size) potentiodynamic polarization experiments have been carried out on the several hours timescale and correlated to complementary structural information from electron backscatter diffraction (EBSD) and energy dispersive x-ray spectroscopy (EDS) in order to determine the effect of grain orientation and inclusions on electrochemical processes at low carbon steel in neutral solution (10 mM KNO3). Through this approach, it has been shown unequivocally that for the low index planes, anodic currents in the passive region (an indicator of corrosion susceptibility) are greatest on (101) planes compared to (100) and (111) planes. Furthermore, individual sub-micron MnS inclusions have been probed and shown to undergo active dissolution followed by rapid repassivation. This study demonstrates the high versatility of SECCM and the considerable potential of this technique for addressing structure-activity problems in corrosion and electromaterials science

    Fainting Fanconi syndrome clarified by proxy: a case report

    Get PDF
    BACKGROUND: Rare diseases may elude diagnosis due to unfamiliarity of the treating physicians with the specific disorder. Yet, advances in genetics have tremendously enhanced our ability to establish specific and sometimes surprising diagnoses. CASE PRESENTATION: We report a case of renal Fanconi syndrome associated with intermittent hypoglycemic episodes, the specific cause for which remained elusive for over 30 years, despite numerous investigations, including three kidney and one liver biopsy. The most recent kidney biopsy showed dysmorphic mitochondria, suggesting a mitochondrial disorder. When her son presented with hypoglycemia in the neonatal period, he underwent routine genetic testing for hyperinsulinemic hypoglycemia, which revealed a specific mutation in HNF4A. Subsequent testing of the mother confirmed the diagnosis also in her. CONCLUSION: Modern sequencing technologies that test multiple genes simultaneously enable specific diagnoses, even if the underlying disorder was not clinically suspected. The finding of mitochondrial dysmorphology provides a potential clue for the mechanism, by which the identified mutation causes renal Fanconi syndrome

    Space VLBI at Low Frequencies

    Full text link
    At sufficiently low frequencies, no ground-based radio array will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium. This would be a "space-space" VLBI mission, as only baselines between satellites would be used. Angular resolution would be limited only by interstellar and interplanetary scattering.Comment: To appear in "Astrophysical Phenomena Revealed by Space VLBI", ed. H. Hirabayashi, P. Edwards, and D. Murphy (ISAS, Japan

    The Application of a Hypothesis-driven Strategy to the Sensitive Detection and Location of Acetylated Lysine Residues

    Get PDF
    The application of a hypothesis-driven method for the sensitive determination of lysine acetylation sites on enzymatically digested proteins is described. Comparative sensitivity tests were carried out using serial dilution of an acetylated bovine serum albumin (AcBSA) digest to assess the performance of a multiple reaction monitoring (MRM)–based approach as compared to a more conventional precursor scanning (PS) method. Both methods were capable of selectively detecting an acetylated peptide at the low femtomole level when spiked into a background of 500 fmol six-protein tryptic digest. The MRM approach was roughly tenfold more sensitive than precursor scanning with one acetylated peptide detected and sequenced at the level of 2 fmol on-column. The technique was subsequently applied to a gel-derived sample of cytokeratin-8 (CK8) shown to contain acetylated lysine residues by Western blot analysis. The strategy applied herein, termed MRM-initiated detection and sequencing (MIDAS), resulted in the facile identification of novel sites of acetylation on this protein

    Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles

    Get PDF
    The characterization of electrocatalytic reactions at individual nanoparticles (NPs) is presently of considerable interest but very challenging. Herein, we demonstrate how simple-to-fabricate nanopipette probes with diameters of approximately 30 nm can be deployed in a scanning ion conductance microscopy (SICM) platform to simultaneously visualize electrochemical reactivity and topography with high spatial resolution at electrochemical interfaces. By employing a self-referencing hopping mode protocol, whereby the probe is brought from bulk solution to the near-surface at each pixel, and with potential-time control applied at the substrate, current measurements at the nanopipette can be made with high precision and resolution (30 nm resolution, 2600 pixels μm–2, <0.3 s pixel−1) to reveal a wealth of information on the substrate physicochemical properties. This methodology has been applied to image the electrocatalytic oxidation of borohydride at ensembles of AuNPs on a carbon fiber support in alkaline media, whereby the depletion of hydroxide ions and release of water during the reaction results in a detectable change in the ionic composition around the NPs. Through the use of finite element method simulations, these observations are validated and analyzed to reveal important information on heterogeneities in ion flux between the top of a NP and the gap at the NP-support contact, diffusional overlap and competition for reactant between neighboring NPs, and differences in NP activity. These studies highlight key issues that influence the behavior of NP assemblies at the single NP level and provide a platform for the use of SICM as an important tool for electrocatalysis studies

    A Hydrophobic Gate in an Ion Channel: The Closed State of the Nicotinic Acetylcholine Receptor

    Full text link
    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the `Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, gamma-aminobutyric acid, and serotonin. Cryo-electron microscopy has yielded a three dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 A. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height ca. 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 A radius hydrophobic pore can form a functional barrier to the permeation of a 1 A radius Na+ ion. Using a united atom force field for the protein instead of an all atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.Comment: Accepted by Physical Biology; includes a supplement and a supplementary mpeg movie can be found at http://sbcb.bioch.ox.ac.uk/oliver/download/Movies/watergate.mp

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites
    corecore