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ABSTRACT

The development of tools that can probe corrosion related phenomena at the (sub)microscale is
recognized to be increasingly important in order to understand the surface structural factors (grain
orientation, inclusions etc.) that control the (electro)chemical stability (corrosion susceptibility, pitting,
passivity etc.) of metal surfaces. Herein we consider the application of scanning electrochemical cell
microscopy (SECCM), a relatively new member of the electrochemical droplet cell (EDC) family, for
corrosion research and demonstrate the power of this technique for resolving structure and activity at
the (sub)microscale. Hundreds of spatially-resolved (2 um droplet size) potentiodynamic polarization
experiments have been carried out on the several hours timescale and correlated to complementary
structural information from electron backscatter diffraction (EBSD) and energy dispersive x-ray spec-
troscopy (EDS) in order to determine the effect of grain orientation and inclusions on electrochemical
processes at low carbon steel in neutral solution (10 mM KNOs3). Through this approach, it has been
shown unequivocally that for the low index planes, anodic currents in the passive region (an indicator of
corrosion susceptibility) are greatest on (101) planes compared to (100) and (111) planes. Furthermore,
individual sub-micron MnS inclusions have been probed and shown to undergo active dissolution fol-
lowed by rapid repassivation. This study demonstrates the high versatility of SECCM and the consider-
able potential of this technique for addressing structure-activity problems in corrosion and

electromaterials science.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

to micrometer length scales that can be correlated with comple-
mentary surface information are of great interest in order to resolve

The corrosion of metals and alloys is often caused by the
establishment of local galvanic cells at surface heterogeneities
when exposed to a corrosive environment (e.g., an electrolyte so-
lution). The (electro)chemical characteristics of these surface het-
erogeneities are not completely understood, largely due to the
highly localised nature of the processes that occur [1]. As a conse-
quence, the development of techniques that are able to extract
spatially-resolved electrochemical information on the nanometer
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the relationship between structure (e.g., metal grain orientation)
and function (e.g., corrosion resistance/susceptibility) [2,3].

In this study, we demonstrate how a simple micropipet imaging
probe can be deployed in the scanning electrochemical cell mi-
croscopy (SECCM) [4] format to perform hundreds of spatially-
resolved corrosion-relevant electrochemical measurements on
the minutes to hours timescale so as to reveal the local electro-
chemical properties that are correlated with corresponding surface
structure. SECCM operates on a similar principle as the electro-
chemical droplet cell (EDC) technique [5], whereby electrochemical
measurements are confined to a small area of the surface with the
use of a droplet formed at the end of an electrolyte filled micro-
capillary, equipped with auxiliary electrode(s). The EDC method
allows for the direct, localised (spatially-resolved) investigation of
(semi)conductive electrode substrates, and has previously been
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used to study microscale corrosion processes on metals such as 304
stainless steel [6—8], duplex stainless steel [9—11] and aluminium
[12,13]. Herein, we show that SECCM possesses all of the advan-
tages of the EDC technique for corrosion research, while achieving
significant improvements in terms of speed, resolution and repro-
ducibility, through the use of a simplified probe design and
advanced positioning technology.

SECCM belongs to the scanning electrochemical probe micro-
scopy (SEPM) family of techniques, among which scanning elec-
trochemical microscopy (SECM) is the most used [3,14,15]. SECM
has previously been applied to the study of corrosion processes at
materials including, carbon steel [16], stainless steel [17,18], pure
iron [19,20] and titanium [21]. Nevertheless, despite its popularity,
SECM contrasts with EDC methods in that it probes electrochemical
processes (e.g., corrosion) indirectly by monitoring the concentra-
tions and fluxes of reactant, product or intermediates (e.g., oxygen,
protons or metal ions) by electrochemistry at the probe (tip), and
thus only chemical species can be detected amperometrically or,
more rarely, potentiometrically. Furthermore, the tip response
must remain stable for the entire duration of a scan.

SECCM enables direct voltammetric-amperometric measure-
ments at a series of targeted positions of a sample surface [22—25]
and has previously been applied to resolve the relationship be-
tween structure and activity in a wide range of electrochemical
processes at a diversity of electrode materials (e.g., sp> carbon
materials [26], molybdenum disulfide [27], iron nickel sulphide
catalysts [28], and metallic nanoparticles [23,24]), but has not yet
been employed to study corrosion related phenomena. Here, we
report the first use of SECCM, operated in voltammetric mode, for
probing spatially-resolved corrosion properties, illustrated through
the study of polycrystalline low carbon steel in neutral (10 mM
KNO3) media. Used ubiquitously in construction, the corrosion
properties (i.e., susceptibility/resistance) of low carbon steel are
known to be significantly influenced by chemical composition (e.g.,
alloying elements and inclusions) and/or microstructure (e.g.,
crystallographic orientation and/or phase) [29,30]. The structural/
compositional dependence is shown unequivocally in this work,
where differences in the corrosion susceptibility of the low-index
(100), (101) and (111) grains is elucidated from spatially-resolved
voltammetric measurements and the direct electrochemical
detection and characterisation of sub-micron sized manganese
sulphide inclusions is demonstrated.

2. Experimental

Chemical reagents and electrode materials. The low carbon
steel sample (composition detailed in Table 1) was provided by Tata
Steel, Research and Development (U.K.). In order to prepare the
sample for measurement, the steel sheet was sectioned using an
abrasive cutter to give a sample of size (approx.) 5 x 21 x (thick-
ness) 2 mm, which was subsequently mounted in a carbon-based
conductive mount using a Buehler SimpliMet 3000 Mounting
Press (Buehler, U.S.A.). After mounting, the sample was polished on
a polishing cloth (Buehler Trident) using (successively) 9 um, 3 pm
and 1 pm polishing suspensions (Buehler MetaDi Supreme Sus-
pension). The final polishing step was carried out on a polishing
cloth (Buehler MicroCloth) using 0.05pum alumina suspension

Table 1
Chemical composition of the low carbon steel determined using energy dispersive
X-ray spectroscopy.

% C Mn Si Cr Al P S Cu
005 03 <0.03 006 0.03 <002 <0.02 0.04

Low Carbon Steel

(MasterPrep Sol-gel, Buehler). After polishing, the sample was
washed in acetone, soapy water and then thoroughly in copious
amounts of deionized water, before being gently blown dry. Elec-
trical connection to the sample was made with a copper wire
connected to the outside of the conductive mount with carbon
tape.

Potassium nitrate (KNOs, Sigma-Aldrich), potassium chloride
(KCl, Sigma-Aldrich) and dichlorodimethylsilane [Si(CH3),Cl5, Acros
Organics, >99%] were used as supplied. All solutions were prepared
with ultra-pure deionized water (Integra HP, Purite, U.K.), which
had a resistivity of 18.2 MQ cm at 25 °C.

Surface characterisation. All surface characterisation was car-
ried out with a Zeiss SIGMA FE-SEM (Zeiss, Germany), using an X-
Max 50 mm? energy-dispersive X-ray spectroscopy (EDS) detector
(Oxford Instruments, U.K.) and an Nordlys EBSD detector (Oxford
Instruments, U.K.). SEM images and EDS data were collected at
5keV, whereas EBSD images were collected at 20 keV, with the
sample tilted at 70° to the detector. Following EBSD characterisa-
tion, grains that were chosen for the present study were either on
or close to the low index orientations, (100), (101) and (111). The
criterion for plane selection set in this study was 10° deviation from
the desired orientation.

Macroscale polarization measurements. A Teflon cylinder with
an inner diameter of 2 mm was attached to the low carbon steel
surface with silicone adhesive. A commercial Ag/AgCl reference
electrode (3.4M KCl, eDAQ, Australia) and a platinum counter
electrode were inserted into the cylinder which was filled with
10 mM KNOj solution. The measurement was carried out at a
sweep rate of 80mVs~! using a CHI400 potentiostat (CH In-
struments Inc., US.A).

SECCM probe fabrication. The SECCM micropipet probes were
pulled from borosilicate theta capillaries (TG 150-10, Harvard Part
No. 30-0114, Harvard Apparatus, U.S.A.) using a P-2000 laser puller
(Sutter Instruments, USA). The size (overall diameter) of the
opening at the end of the pipet was approximately 2pum, as
determined by FE-SEM. To aid meniscus (droplet) confinement, the
outer walls of the pulled pipet tip were silanized with dichlor-
odimethylsilane, as previously described [4]. This was achieved by
submerging the tip in Si(CH3),Cl, with argon flowing from the
bottom of the probe at a pressure of 6 bar (this prevented the silane
from entering the tip during immersion). During this process, the
organosilane becomes covalently attached to the glass surface, to
produce a robust and resistant hydrophobic coating on the outer
wall of the micropipette that does not contaminate the sample
surface or need to be reapplied during the scan. The droplet
(meniscus) cell was formed at the end of the pipet by filling each
channel of the probe with 10 mM KNOj solution. A small amount of
silicone oil (Fluka Analytical) was inserted on top of the KNO3 so-
lution to reduce the evaporation during prolonged SECCM scanning
experiments, as previously reported [27]. After filling, Ag/AgCl
quasi reference counter electrodes (QRCEs) were inserted into each
channel of the dual barrelled probe. The Ag/AgCl QRCEs were
prepared by anodizing 0.125 mm diameter annealed silver wire
(Goodfellow, UK., 99.99%) in a saturated KCI solution, and have
previously been shown to possess long-term stability and not to
contaminate the surface investigated in a variety of electrolyte
solutions [31]. The Ag/AgCl QRCE has a potential of ca. 0.25V vs.
saturated calomel electrode (measured potentiometrically) when
immersed in 10 mM KNOs.

SECCM set up. The SECCM set up (shown schematically in
Fig. 1a) has been reported in detail previously [4,22]. Briefly, the
micropipet probe was mounted on a z-piezoelectric positioner (P-
753.3CD, Physikinstrumente, Germany) to which a periodic oscil-
lation (perpendicular to the sample) was applied (250 nm peak-to-
peak amplitude at a frequency of 286 Hz) by an ac signal generated
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Fig. 1. (a) Schematic showing the voltammetric hopping-mode SECCM protocol employed to make spatially-resolved potentiodynamic polarization measurements at a sample
surface. The arrows indicate the path of probe across the surface. (b) Plots of the (i) dc and (ii) ac ionic current versus z-position as the micropipet probe is approached towards a low
carbon steel surface. The surface was detected at an extension of 15.34 um. (c) FE-SEM image of a 17 x 17 matrix of droplet ‘footprints’ on a low carbon steel surface, left after making
spatially-resolved potentiodynamic polarization measurements using the SECCM setup outlined in (a). (d) Individual (red) and averaged (black) Tafel plots resulting from the row of
droplet footprints highlighted by the yellow box in (c), obtained in a 10 mM KNO; solution at a sweep rate of 80 mVs~'. The three ‘regions’ indicated in (d) correspond to: (1)
cathodic, (2) passive and (3) transpassive behaviour of the metal electrode surface. (e) Tafel plot taken from a macroscopic polarization measurement of the low carbon steel in

10 mM KNO; at a sweep rate of 80 mVs~.

by a lock-in amplifier (SR830, Stanford Research Systems, U.S.A.). A
bias potential (V1) of +0.1 V was applied between the QRCEs in
order to generate an ion conductance current (iqc) across the liquid
meniscus formed at the end of the probe, which was used as a
feedback signal during positioning of the micropipet probe relative
to the substrate (steel) surface (e.g., see Fig. 1b—i below). The
micropipet was positioned above the low carbon steel surface using
micropositioners for coarse movement and an xy-piezoelectric
positioner (P-621.2CD, Physikinstrumente) for fine movement
laterally (parallel to the sample).

During operation, the probe was approached to the substrate
surface at a constant velocity (ca. 0.2 um/s here) applied to the z-
piezoelectric positioners, and once contact between the droplet
(meniscus) cell and the surface had been established (the pipet
probe itself did not make contact with the surface), the ion
conductance current showed a periodic modulation (ac compo-
nent, i,c) at the same frequency of oscillation (measured with the
same lock-in amplifier highlighted above) due to reversible defor-
mation of the droplet [32]. The magnitude of i,. informs on the
status of the droplet (e.g., see Fig. 1b—ii). An i, set point of 6 pA was
used as the feedback signal herein and electrochemistry was per-
formed within the area contacted by the meniscus cell. A substrate
voltage of V, was applied to one of the QRCEs to control the
working electrode (e.g., low carbon steel) potential (Es), where
Es=-(V1/2 + V5) [32], and the working electrode current (isy.f) was
measured. The size of the confined area (i.e., working electrode
area) was determined after each set of measurements by FE-SEM
imaging of the droplet “footprint” residue, as discussed in detail
below.

Electrochemical measurements at the low carbon steel (working
electrode) were made using a cyclic voltammetric “hopping”
regime, as described previously [22,27,33]. In essence, the micro-
pipet probe made a series of measurements by performing poten-
tiodynamic polarization at predefined locations in a grid. The
hopping distance (i.e., spatial resolution) between each pixel was
5 um to avoid overlap of the probed areas.

The entire SECCM apparatus was supported on an optical table
(Thorlabs, U.S.A.) and shielded with a Faraday cage equipped with
heat sinks and vacuum panels to minimise noise and variations in
temperature (temperature of measurements ca. 21 °C). The QRCE
potentials were controlled (with respect to ground) with a home-
built bipotentiostat and the low carbon steel substrate (working
electrode, common ground) current was measured using a home-
built electrometer. Each data point in the voltammetric measure-
ments was taken as an average of 1025 samples recorded at 10 ps
intervals (i.e., approximately every 10 ms). The scan rates used in
this study were 40, 50 and 80 mVs~! which resulted in data points
being acquired every 0.4, 0.5 and 0.8 mV. Data acquisition and fine
control of all instrumentation was achieved using an FPGA card
(PCle-7852R) controlled by a LabVIEW 2016 (National Instruments,
U.S.A.) interface running the Warwick Electrochemical Scanning
Probe Microscopy (WEC-SPM, www.warwick.ac.uk/
electrochemistry) software. Data treatment and analysis was car-
ried out using the Matlab R2015b (8.6.0.267246, Mathworks, U.S.A.)
and OriginPro 2016 64bit (b9.3.226, OriginLab, U.S.A.) software
packages. The standard error of the average potentiodynamic po-
larization curves was calculated by dividing the standard deviation
by the square root of the number of data points.
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3. Results and discussion

SECCM: operational principles and practical considerations.
In a recent comprehensive review [2], droplet cell based-
techniques (ie., the EDC technique) were considered to have
several serious limitations in spatially-resolved corrosion research.
Our intention here is to show that these limitations are readily
overcome with SECCM, positioning it as a powerful technique for
spatially-resolved corrosion-related measurements. A first issue
raised is that the probe dimensions (i.e., micro-capillary size),
which ultimately determines the spatial resolution of the tech-
nique, is limited by the current resolution of the potentiostat (i.e.,
small probes give rise to currents that are too small to measure
accurately) [34]. This is not an issue for the SECCM set up used
herein, as demonstrated by previous studies by our group [35—39],
where currents as low as a few fA were measured with excellent
signal-to-noise and reasonable time resolution, noting the well-
known bandwidth-current magnitude trade off [40].

A second issue concerns the complexity of fabricating the
droplet cell micro-probes. In conventional micro-cell experiments,
the microcapillary probes are fabricated from pulled glass pipets,
which are ground and polished until the required size is achieved,
before the application of a silicone rubber gasket on the tip [5,6].
This is a somewhat laborious process. In addition, although the
silicone rubber gaskets reportedly improve the versatility and
reliability of the conventional micro-cell technique by ensuring
electrolyte confinement and contact with the surface [5,6], the
inconsistent quality of the probe-surface contact can lead to a risk
of crevice corrosion in the scanning area, thus drastically affecting
the electrochemical response [41]. In addition, probe-surface con-
tact is traditionally made manually using a microscope to judge
when the gasket has made a seal with the surface [2], which is both
time-consuming and relatively irreproducible, as the contact may
vary from point-to-point.

By contrast, the micropipet (or nanopipet [23,24]) probes in
SECCM can be fabricated quickly and reproducibly using a laser
puller, with no need to apply a silicone rubber gasket [4,42]. In
SECCM, consistent droplet-cell surface contact is achieved by
silanizing the outer wall of the probe (detailed in the Experimental
Section), to make it hydrophobic, which aids in droplet confine-
ment during meniscus surface contact [4]. As highlighted above,
the ion conductance current between the QRCEs in the dual
channel probe is sensitive to the size and shape of the meniscus
between the end of the pipet and surface, and a set point value of
the ac conductance current, iyc (e.g, when the droplet initially
makes contact with the surface, see Fig. 1b) ensures consistent
meniscus contact, without the need for a gasket. Thus, the approach
and contact of the meniscus with the steel surface is automated and
precisely controlled. This is a key advantage of the technique,
enabling large numbers of surface measurements to be made in a
reasonable time (vide infra) and thus making the measurements
more statistically sound than with other droplet cell methods (e.g.,
conventional EDC).

A third issue is the possibility of high ohmic (iR) resistance be-
tween the working and counter-reference electrodes [43,44]. A
significant ohmic drop is expected when large currents are passed
between the working and counter electrodes with capillaries on the
order of 100 pm [43]. In SECCM, the ion current between the two
chambers (iqc, see Fig. 1b) reveals the pipet resistance, which is ca.
50 MQ herein [R = E/igc = +0.1 V/(2 x 1072 A) = 5 x 107 Q]. Thus, by
setting a limit of 5mV on the ohmic drop, this means that surface
currents up to ca. 100 pA are essentially immune to ohmic effects,
i.e., only in the transpassive region (region 4, vide infra) of the Tafel
plots in Fig. 1d is ohmic drop a consideration. Another risk of
biasing the potential to the transpassive region is the effect of

extensive corrosion products on the stability of the probe (QRCEs
and electrolyte) between scanning points. To avoid this, previous
studies [45] have restricted the applied potential to values outside
of the transpassive region, which is the approach that has mainly
been applied herein.

Finally, the potentiodynamic sweep rate for the polarization
experiments is a critically important consideration. Traditionally,
the potentiodynamic sweep rates employed in corrosion research
are extremely low (<1 mVs~!), which facilitates the straightfor-
ward calculation of the corrosion potential (Ecor,) and corrosion
current (icorr), taken indicators of bulk corrosion susceptibility/
resistance [46,47]. By contrast, high potentiodynamic sweep rates
are preferable in the micro-droplet format in order to minimise
perturbation to the sample surface and solution at the end of the tip
and to avoid tip blocking [12], as well as to reduce the time taken
for the electrochemical map to be produced. In addition to chang-
ing the timescale of the experiment, current from nonfaradaic
processes (iyf) such as double layer charging and stray capacitance
becomes more prevalent at high sweep rates, evident in the
current-potential (i-E) plots in Fig. 2a, which show voltammetric
segments recorded between 0.15 and —1.05V vs Ag/AgCl QRCE at
scan rates between 0.01 Vs™! and 0.5 Vs™!. As shown in Fig. 2b, the
sweep rate has a significant effect on iy distortion of the logarith-
mic Tafel plots that gives rise to an apparently sweep rate-
dependent Ecorr and icorr, as noted previously [46]. For this reason
these parameters will not be considered as indicators of corrosion
resistance/susceptibility herein. Rather, we are able to draw on
other parameters from the voltammetric response.

As highlighted above in the Experimental Section, for this work,
a voltammetric hopping mode regime [22,27,33] was used,
whereby a potentiodynamic polarization measurement was made
at a series of spatially-resolved ‘pixels’ on the substrate surface.
Returning to Fig. 1, representative SECCM potentiodynamic polar-
ization curves (plotted in Tafel form), on low carbon steel are very
reproducible (Fig. 1d) which shows Tafel plots obtained from the
row (17 sites) of a scan (indicated in Fig. 1c), alongside the average
plot from this row.

The data in Fig. 1d reflect the expectations from the Pourbaix
diagram for an iron electrode in neutral solution [48]. The potential
sweep initially starts in the cathodic region (region 1 in Fig. 1d),
where hydroxide (OH™) generation dominates, arising from a
combination of the oxygen reduction reaction (ORR) and the
hydrogen evolution reaction (HER):

0, + 2H,0 + 4~ —40H™ (1)

@ 4

-]

40 H 12
< 3 = g
L —F 5
= g | j

W= 14

y
-40 -16
-1 -0.5 0 -1 -0.5 0

V vs Ag/AgCl V vs Ag/AgCl

Fig. 2. Potentiodynamic polarization experiments carried out at adjacent sites on a
low carbon steel surface in 10 mM KNOs; with a 2 um diameter micropipet probe at
sweep rates of (top to bottom) 0.5, 0.2, 0.1, 0.08, 0.05, 0.04, 0.02 and 0.01 Vs~ . The data
are presented as (a) i-E plots and (b) corresponding Tafel plots. The apparent shift in
Ecorr is caused by the increased contribution of nonfaradaic (charging) current to the
total measured current with increasing sweep rate (see text).
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2H,0 + 2e~ —H, + 20H" 2)

Note that in the SECCM configuration, there is an enhanced flux of
0O, across the air-water-electrode three phase boundary [49]. In
addition to the ORR, any existing passive film on the steel surface is
expected to be at least partially reduced in the cathodic region of
the Tafel plot (i.e., region 1 in Fig. 1d).

As the system passes through E.+ an active region is not
observed, and the steel essentially passivates instantly on the
timescale of these measurements. The production of ferrous and
ferric hydroxide is expected [50], for example via the reactions
shown in eqgs. (3) and (4):

Fe + 2H,0 —Fe(OH), + 2H" + 2e~ (3)

Fe* + 30H —Fe(OH); + e~ (4)

where OH™ arises from the ORR and HER, as noted above (Egs. (1)
and (2)). Region 2 is the passive region, where Fe(OH), and Fe(OH)3
are further oxidised to form a (semi) protective passive film on the
surface [50], effectively suppressing corrosion throughout this po-
tential range:

2Fe(OH), — Fe;03 + Hy0 + 2H* + 2e~ (5)

3Fe(OH); — Fe304 + HyO + 2H' + 2e~ (6)

Region 3 is the transpassive region, where the oxygen evolution (Eq.
(7)) or the complete breakdown of the passive layer formed in re-
gion 3 results in bulk dissolution of the underlying metal.

2H,0— 0, +4H" + 4e~ (7)

By comparing the results collected using SECCM (Fig. 1d) with
those collected at the macroscale (Fig. 1e) it is clear the corrosion
potential is shifted more positive when using SECCM. As previously
mentioned [49], the droplet cell configuration enables a high flux of
oxygen (across the meniscus/air interface) compared to the “bulk
solution” conditions of the macroscopic experiment. Therefore, the
ORR is enhanced in SECCM experiments. By assuming the anodic
branch for both SECCM and macroscopic experiments behaves
similarly, higher rates of cathodic reactions results in the positive
shift of the corrosion potential in accordance with mixed potential
theory [51]. In addition, in the macroscale Tafel plot a small
oxidation peak arises following the corrosion potential which does
not appear in the SECCM Tafel plot. This is because the enhanced
oxygen reduction in SECCM limits the anodic currents, thus sub-
duing this peak, as the current, i, is a sum of the cathodic, i., and
anodic processes, i3, (EqQ. (8)).

i =i+ i (8)

Crystallographic orientation and corrosion susceptibility in
low carbon steel. We now explore the relationship between elec-
trochemical behaviour (e.g., corrosion resistance/susceptibility) and
crystallographic (grain) orientation to highlight a major capability
of SECCM when spatially-resolved voltammetric data are combined
with EBSD data of the same area of the surface (correlated or co-
location electrochemical multi-microscopy). Many studies have
attempted to explain the link between crystallographic orientation
and the electrochemical behaviour of metals, as exemplified by
studies of iron [52—55], pearlitic steel [56], FeAlCr ferritic steel [57],
316L stainless steel [58] and aluminium [59]. However, although
the crystallographic orientation affects the electrochemical
behaviour of metal surfaces, to the best of our knowledge, there is

no clear trends, nor are there consistent explanations for the dif-
ferences in electrochemical behaviour observed between the
grains.

SECCM was used to electrochemically map an area on a low
carbon steel sample, as shown in Figure 3a. Each droplet ‘footprint’
in the image corresponds to an individual potentiodynamic polar-
ization experiment carried out in 10 mM KNOs at a sweep rate of
50mVs~! (e.g., see Fig. 1c). The 256 individual potentiodynamic
polarization experiments were made over a total scan time of 6 h,
and from Fig. 3a it is clear that the geometry of the droplet cell does
not change on this timescale (i.e., the droplet ‘footprint’ size is
reproducible). The same area of the steel surface was subsequently
mapped using EBSD, as shown in Fig. 3b. Evidently, a significant
number potentiodynamic polarization experiments were made on
each of the (100), (110) or (111) orientated grains (and other ori-
entations, Fig. 3¢). This ‘pseudo single crystal’ approach [60] of the
SECCM technique allows multiple crystallographic orientations on
a polycrystalline sample to be independently interrogated in a
single experiment.

The raw i-E data were extracted from each point shown in

b 100 20f
-10 101
— )
=-11
jo2]
ke]
-12
]
-13 Vv Ag/AgCl
1 0.5 0 05 e
V v Ag/AgCl

Fig. 3. (a) SEM image with the EBSD map superimposed and (b) the corresponding
EBSD map of the area of the low carbon steel surface that was characterized with
SECCM. The droplet ‘footprints’ remaining after each of the individual 256 potentio-
dynamic polarization experiments are clearly visible in (a). (¢) Grains deemed close
enough to the low index planes are shown in (i), (ii) and (iii) for (100), (101) and (111),
respectively. (d) Representative Tafel plots obtained on the (100) (red trace), (101)
(green trace) and (111) (blue trace) grains on the area of the low carbon steel surface
shown in (a) and (b). The plots were obtained by averaging the i-E data collected
during spatially-resolved potentiodynamic polarization measurements made with
SECCM. 15, 12 and 26 individual measurements were averaged on the (100), (101) and
(111) grains, respectively. The polarization experiments were carried out in 10 mM
KNOs at a potentiodynamic sweep rate of 50 mVs~' using a micropipet probe with a
diameter of 2 pm. The highlighted section is of the potential region spanning —0.4
to +0.45 V vs. Ag/AgCl, which is shown magnified in the i-E plot. The dashed lines
included above and below the traces represents the standard error of the data.
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Fig. 3a, assigned to a dominant grain (the grains that were chosen
and considered suitable for study are shown in Fig. 3c), and then
averaged to give the Tafel plots shown in Fig. 3d. The results are
representative because there are 15, 12 and 26 individual mea-
surements on the (100), (101) and (111) grains, respectively. The
cathodic branch of the Tafel plots, corresponding to the ORR, HER
and/or reduction of the pre-existing passive film on the low carbon
steel surface (discussed above), are very similar for each of the
grains, indicating that these reactions do not have a strong surface-
orientation-dependence on this surface, under these conditions. In
the passive region and moving in the anodic direction, the current
is comparable on each of the grains up to an applied potential of
approximately 0V vs. Ag/AgCl QRCE, where upon the (101) grain
gives rise to larger anodic currents than the (100) and (111) grains.
Considering this potential region corresponds to passive film for-
mation/growth (e.g., see Egs. (5) and (6)), these results suggest that
the passive film formed on the (101) grain is less effective at pre-
venting anodic dissolution than that formed on the (100) or (111)
grains. Supporting this deduction is an additional electrochemical
(SECCM) scan, EBSD and FE-SEM images for the same low carbon
steel sample in a different area, with the results summarised in
Fig. 4. Comparing the FE-SEM image in Fig. 4a, with the EBSD maps

02 0.1 0 0.1
V v Ag/AgCl

-1 -08 -06 -04 -02 0 02
V v Ag/AgCI

Fig. 4. (a) SEM image with the EBSD map superimposed and (b) corresponding EBSD
map of the area of the low carbon steel surface that was characterized with SECCM. (c)
Grains deemed close enough to the low index planes are shown in (i), (ii) and (iii) for
(100), (101) and (111), respectively. (d) Representative Tafel plots obtained on the (100)
(red trace), (101) (green trace) and (111) (blue trace) grains on the area of the low
carbon steel surface shown in (a) and (b). The data were obtained by averaging the i-E
data collected during spatially-resolved potentiodynamic polarization measurements
made with SECCM. 41, 19 and 38 individual measurements were averaged on the (100),
(101) and (111) grains, respectively. The polarization experiments were carried out in
10 mM KNOjs at a sweep rate of 40 mV s~ ! using a micropipet probe with a diameter of
2 um. The highlighted section is of the potential region spanning —0.2 to +0.15 V vs.
Ag/AgCl, which is shown magnified in the i-E plot. The dashed lines included above
and below the traces represents the standard error of the data.

in Fig. 4b to extract the averaged Tafel plots in Fig. 4d, it is clear that
the (101) grain gives rise to higher anodic currents than the (100) or
(111) grains in the passive region.

What is also noticeable is that a small peak arises at approxi-
mately OV vs Ag/AgCl on Fig. 3d on the (101) and (111) grains, but
interestingly not on the (100) grains. Given the potential of this
peak, we considered the deposition/stripping of Ag(0) arising from
the Ag/AgCl QRCE as a possible origin, however if this were the case,
this peak would be seen on all grains, and furthermore such
problems are easily avoided with care [31], as taken in this paper.
Therefore we can rule this out as an explanation. Furthermore,
detailed analysis of the voltammograms indicated that this peak
occurred in all measurements on (101) and (111) grains but not
once on the (100) grains. The amount of charge passed under this
peak corresponds to ca. 1% of a monolayer over the scanned area
which indicates this is a very subtle process. It is therefore very
difficult to speculate on the origin of this peak, although this
finding does show the capability of SECCM to detect these very
subtle grain dependent electrochemical processes.

In previous studies [52], differences between the relative
corrosion susceptibility of the grains have been attributed to the
geometry of each grain surface, particularly the surface atom
density. The planar packing factor increases in the order
(111) < (100) < (101) (with values 0.340, 0.589 and 0.833, respec-
tively) for the body-centred cubic (BCC) crystal system considered
herein. It appears that the higher the density of atoms exposed to
the solution (i.e., present at the surface plane), the greater the
chance of anodic oxidation, resulting in greater corrosion suscep-
tibility for the densely packed (101) grain compared to the (100) or
(111) grains. This is consistent with previous studies [54,61] that
observed the (101) plane on iron to exhibit higher anodic dissolu-
tion currents than the (100) plane. This was attributed due to the
higher atomic density at the surface of the exposed (101) grains.
However, there is also an argument that this difference is due to the
nature of the passive film formed on the (101) and (100) grains, as
suggested above. It has been reported [62] that a thicker (and
therefore perhaps more protective) passive film forms on (100)
than (101) grains on iron, which could also be responsible for the
increased anodic currents measured on (101) grains.

It is important to note that although the influence of the planar
packing factor can be used to explain why there is an increased
response from (101) planes in the passive region, it does not explain
why little to no difference is observed in the response from the
(100) and (111) planes. One reason for this could be that the dif-
ference is too subtle to detect, although more likely is that the
density of atoms at the surface is not the only influence on the
corrosion behaviour of different crystal planes. As noted before,
previous studies [52,53,57,59] have struggled to maintain consis-
tent explanations for this variation between grains suggesting the
problem is more complex and involves other factors than just
surface atom density. In a recent review, a number of surface
properties affecting the corrosion of carbon steel are discussed in
detail [63].

Detecting and probing electrochemistry at MnS inclusions in
low carbon steel. MnS inclusions are well-known onset sites for
localised (pitting) corrosion in stainless steel and steel alloys
[64,65]. As shown in Fig. 5, the low carbon steel used herein con-
tains MnS inclusions of sizes ranging from 200 nm to 1 um. It fol-
lows that when performing SECCM mapping on an area of this low
carbon steel sample, some of the probed areas (droplet footprints)
will contain a MnS inclusion.

Potentiodynamic polarization curves obtained in the SECCM
format, in areas containing MnS inclusions are shown in Fig. 6. In
each plot, three Tafel curves are shown, corresponding to the site
containing the inclusion (labelled 2 in Fig. 6a) and two adjacent
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Fig. 5. (a) SEM image of MnS inclusions (indicated by coloured circles) on a low carbon
steel surface. (b) Energy dispersive X-ray spectroscopy (EDS) responses of each of the
inclusions, with the colours corresponding to the inclusions highlighted in (a).
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Fig. 6. (a) SEM images of adjacent droplet footprints with (2) and without (1 and 3) an
MnS inclusion (indicated by a red circle). (b) Tafel plots obtained at the corresponding
points labelled in (a). The potentiodynamic polarization experiments were performed

in the SECCM format (probe diameter = 2 pm) on low carbon steel in 10 mM KNOs at a

sweep rate of 80 mVs~L

sites containing no inclusions (labelled 1 and 3 in Fig. 6a). The Tafel
plots in Fig. 6b, obtained at the inclusion sites show an abrupt in-
crease in anodic current in the passive region at a potential of
approximately 600 mV vs. Ag/AgCl, which immediately returns to
the original passive value, giving rise to an anodic current ‘spike’.
This ‘spike’ in the current is consistent with findings of Webb et al.
[66], who used a 100 um microcapillary to land on rather large MnS
inclusions in 304 stainless steel, and found similar current-
potential behaviour on the same inclusions.

Comparing the data in Fig. 6 to the findings of Webb et al. [66], it
is clear that the current ‘spikes’ are attributable to the dissolution
and immediate re-passivation of the MnS inclusion within the
probed droplet cell area. This is also consistent with the fact that
the inclusion is still visible within the probed area after the polar-
ization experiment (the inclusions are labelled in Fig. 6a). These
results highlight the excellent spatial resolution achievable with
SECCM, in detecting inclusions that are on the sub-micron scale. It

is interesting to note that the cathodic branch of the Tafel plots is
not significantly affected by the presence of the MnS inclusions
(Fig. 6b). Although this suggests that MnS does not catalyse the
ORR/HER under these conditions, it needs to be noted that the in-
clusions only comprise a very small portion of the probed area
(droplet ‘footprints’, estimated to be <10% from Fig. 6a). For this
reason, in order to be detectable with the micron-sized probe used
herein, the sub-micron MnS inclusions would need to possess very
high activity relative to the steel surface, as is seen in the anodic
case (i.e., the MnS is active, whereas the steel is passive), but not
necessarily the cathodic case (ie., both the MnS and steel are
active). Future work will make use of smaller probes, allowing the
electrochemical activity of sub-micron surface features, such as
inclusions and grain boundaries to be investigated directly.

4. Conclusions

Scanning electrochemical cell microscopy (SECCM) has been
used to probe local electrochemical phenomena related to corro-
sion processes at the microscale. The working principles of the
technique have been demonstrated and the advantages compared
to earlier electrochemical droplet cells (EDCs) have been outlined.
The applicability of SECCM to corrosion-related research has been
demonstrated through studies of a body centred cubic (BCC)
structured polycrystalline low carbon steel in aqueous electrolyte
media (10 mM KNOs3). Through combination of spatially-resolved
electrochemical information from SECCM with complementary
structural information from EBSD in a correlative multi-microscopy
approach, it was shown unequivocally that for the low index
planes, anodic currents in the passive region (i.e., corrosion sus-
ceptibility) were greatest on (101) planes compared to (100) and
(111) planes. Thus, the more densely packed (101) was most sus-
ceptible to anodic oxidation under these neutral pH conditions. In
future studies, electrochemical data will be considered across the
entire spectrum of crystallographic orientations, rather than just
the low index planes, in order to gain a holistic view of the struc-
tural factors controlling corrosion susceptibility/resistance at metal
surfaces.

SECCM was additionally applied to study the electrochemical
behaviour of individual sub-micron MnS inclusions embedded in
the low carbon steel surface, which were shown to give rise to large
anodic current ‘spikes’ in the passive region, attributable to the
electrochemical dissolution and subsequent repassivation of the
inclusion. This aspect of the study highlights the ability of SECCM to
probe sub-micron to nanoscale surface features and bodes well for
future investigations of inclusions and grain boundaries.

This study has further demonstrated the wide applicability of
SECCM in materials research. The technique was successfully
applied to perform hundreds of pm-resolved corrosion measure-
ments on the several hours timescale. Recent work [23,24] has
demonstrated further improvements of SECCM in terms of speed
and resolution, with thousands of nm-resolved measurements now
possible on the tens of minutes timescale. Moving forward, we
believe that SECCM will have an important role to play in corrosion
science. Understanding structure-activity is highly important in
corrosion science, and as demonstrated by this initial study, high-
resolution correlation of electrochemical data with the underlying
structure and properties of the surface will enhance knowledge of
the electrochemical processes that drive corrosion.

Acknowledgements
This work was supported by an iCASE award to LY. from the

Engineering and Physical Sciences Research Council and Tata Steel
Research and Development. C.L.B. acknowledges support from the



L.C. Yule et al. / Electrochimica Acta 298 (2019) 80—88 87

European Union's Horizon 2020 research and innovation pro-
gramme under the Marie Skiodowska-Curie grant agreement No.
702048 (NEIL). P.R.U. gratefully acknowledges support from a Royal
Society Wolfson Research Merit Award. The authors also
acknowledge Dr Digvijay Thakur from Tata Steel Research and
Development.

References

(1]
[2]

(3]

[4

(5

(6]

(7

[8

[9

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

G.S. Frankel, N. Sridhar, Understanding localized corrosion, Mater. Today 11
(2008) 38—44, https://doi.org/10.1016/5S1369-7021(08)70206-2.

F. Andreatta, L. Fedrizzi, The use of the electrochemical micro-cell for the
investigation of corrosion phenomena, Electrochim. Acta 203 (2016)
337-349, https://doi.org/10.1016/j.electacta.2016.01.099.

N.A. Payne, L. Stephens, ]J. Mauzeroll, The application of scanning electro-
chemical microscopy to corrosion research, Corrosion 73 (2017) 759—780,
https://doi.org/10.5006/2354.

N. Ebejer, A.G. Giiell, S.CS. Lai, K. McKelvey, M.E. Snowden, P.R. Unwin,
Scanning electrochemical cell microscopy: a versatile technique for nanoscale
electrochemistry and functional imaging, Annu. Rev. Anal. Chem. 6 (2013)
329-351, https://doi.org/10.1146/annurev-anchem-062012-092650.

H. Bohni, T. Suter, A. Schreyer, Micro- and nanotechniques to study localized
corrosion, Electrochim. Acta 40 (1995) 1361—1368, https://doi.org/10.1016/
0013-4686(95)00072-M.

T. Suter, H. Bohni, A new microelectrochemical method to study pit initiation
on stainless steels, Electrochim. Acta 42 (1997) 3275—3280, https://doi.org/
10.1016/S0013-4686(70)01783-8.

T. Suter, H. Bohni, Microelectrodes for studies of localized corrosion processes,
Electrochim. Acta 43 (1998) 2843—2849, https://doi.org/10.1016/S0013-
4686(98)00025-5.

E.G. Webb, R.C. Alkire, Pit initiation at single sulfide inclusions in stainless
steel, J. Electrochem. Soc. 149 (2002) B286, https://doi.org/10.1149/
1.1474432.

R. a Perren, T. a Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni,
M.O. Speidel, Corrosion resistance of super duplex stainless steels in chloride
ion containing environments: investigations by means of a new micro-
electrochemical method.Il. Influence of precipitates, Corros. Sci. 43 (2001)
727-745, https://doi.org/10.1016/S0010-938X(00)00088-3.

CJ. Park, H.SS. Kwon, M.M. Lohrengel, Micro-electrochemical polarization
study on 25% Cr duplex stainless steel, Mater. Sci. Eng. 372 (2004) 180—185,
https://doi.org/10.1016/j.msea.2003.12.013.

V. Vignal, N. Mary, R. Oltra, J. Peultier, A mechanical—electrochemical
approach for the determination of precursor sites for pitting corrosion at the
microscale, J. Electrochem. Soc. 153 (2006) B352, https://doi.org/10.1149/
1.2218762.

F. Andreatta, M.M. Lohrengel, H. Terryn, JHW. De Wit, Electrochemical
characterisation of aluminium AA7075-T6 and solution heat treated AA7075
using a micro-capillary cell, Electrochim. Acta 48 (2003) 3239—3247, https://
doi.org/10.1016/S0013-4686(03)00379-7.

N. Birbilis, R.G. Buchheit, Electrochemical characteristics of intermetallic
phases in aluminum alloys, J. Electrochem. Soc. 152 (2005) B140, https://
doi.org/10.1149/1.1869984.

AlJ. Bard, FRF. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy.
Introduction and principles, Anal. Chem. 61 (1989) 132—138, 0003-2700/89/
0361-0132$01.50/.

S. Amemiya, AJ. Bard, F.R.F. Fan, M.V. Mirkin, P.R. Unwin, Scanning electro-
chemical microscopy, Anal. Chem. 1 (2008) 95—131, https://doi.org/10.1149/
1.2096429.

Y. Yuan, L. Li, C. Wang, Y. Zhu, Study of the effects of hydrogen on the pitting
processes of X70 carbon steel with SECM, Electrochem. Commun. 12 (2010)
1804—1807, https://doi.org/10.1016/j.elecom.2010.10.031.

CH. Paik, H.S. White, R.C. Alkire, Scanning electrochemical microscopy
detection of dissolved sulfur species from inclusions in stainless steel,
J. Electrochem. Soc. 147 (2000) 4120, https://doi.org/10.1149/1.1394028.

C.F. Dong, H. Luo, K. Xiao, X.G. Li, Y.F. Cheng, In situ characterization of pitting
corrosion of stainless steel by a scanning electrochemical microscopy, ]. Mater.
Eng. Perform. 21 (2012) 406—410, https://doi.org/10.1007/s11665-011-9899-

y.
A.C. Bastos, A.M. Simoes, S. Gonzalez, Y. Gonzdlez-Garcia, R.M. Souto, Imaging
concentration profiles of redox-active species in open-circuit corrosion pro-
cesses with the scanning electrochemical microscope, Electrochem. Commun.
6 (2004) 1212—1215, https://doi.org/10.1016/j.elecom.2004.09.022.

J. Izquierdo, A. Eifert, R.M. Souto, C. Kranz, Simultaneous pit generation and
visualization of pit topography using combined atomic force-scanning elec-
trochemical microscopy, Electrochem. Commun. 51 (2015) 15—18, https://
doi.org/10.1016/j.elecom.2014.11.017.

N. Casillas, SJ. Charlebois, W.H. Smyrl, H.S. White, Pitting corrosion of tita-
nium, J. Electrochem. Soc. 141 (1994) 636—642, https://doi.org/10.1179/
000705972798323297.

C.L. Bentley, M. Kang, P.R. Unwin, Scanning electrochemical cell microscopy:
new perspectives on electrode processes in action, Curr. Opin. Electrochem. 6
(2017) 23-30, https://doi.org/10.1016/j.coelec.2017.06.011.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

C.L. Bentley, M. Kang, P.R. Unwin, Nanoscale structure dynamics within
electrocatalytic materials, J. Am. Chem. Soc. 139 (2017) 16813—16821, https://
doi.org/10.1021/jacs.7b09355.

C.L. Bentley, P.R. Unwin, Nanoscale electrochemical movies and synchronous
topographical mapping of electrocatalytic materials, Faraday Discuss 210
(2018) 365—379, https://doi.org/10.1039/C8FD00028]J.

N. Ebejer, M. Schnippering, A.W. Colburn, M.A. Edwards, P.R. Unwin, Localized
high resolution electrochemistry and multifunctional Imaging: scanning
electrochemical cell microscopy, Anal. Chem. 82 (2010) 9141-9145, https://
doi.org/10.1021/ac102191u.

P.R. Unwin, A.G. Giiell, G. Zhang, Nanoscale electrochemistry of sp2 carbon
materials: from graphite and graphene to carbon nanotubes, Acc. Chem. Res.
49 (2016) 2041—-2048, https://doi.org/10.1021/acs.accounts.6b00301.

C.L. Bentley, M. Kang, F. Maddar, F. Li, M. Walker, J. Zhang, P.R. Unwin, Elec-
trochemical maps and movies of the hydrogen evolution reaction on natural
crystals of molybdenite (MoS 2 ): basal vs. Edge plane activity, Chem. Sci. 8
(2017) 6583—6593, https://doi.org/10.1039/C7SC02545A.

C.L. Bentley, C. Andronescu, M. Smialkowski, M. Kang, T. Tarnev, B. Marler,
P.R. Unwin, U.P. Apfel, W. Schuhmann, Local surface structure and composi-
tion control the hydrogen evolution reaction on iron nickel sulfides, Angew.
Chem. Int. Ed. 57 (2018) 4093—4097, https://doi.org/10.1002/anie.201712679.
D. Lopez, T. Perez, S.N. Simison, The influence of microstructure and chemical
composition of carbon and low alloy steels in CO2 corrosion . A state-of-the-
art appraisal, Mater. Des. 24 (2003) 561—575, https://doi.org/10.1016/S0261-
3069.

J. Guo, S. Yang, C. Shang, Y. Wang, X. He, Influence of carbon content and
microstructure on corrosion behaviour of low alloy steels in a Cl- containing
environment, Corros. Sci. 51 (2008) 242-251, https://doi.org/10.1016/
j.corsci.2008.10.025.

C.L. Bentley, D. Perry, P.R. Unwin, Stability and placement of Ag/AgCl quasi-
reference counter electrodes in confined electrochemical cells, Anal. Chem. 90
(2018) 7700—7707, https://doi.org/10.1021/acs.analchem.8b01588.

M.E. Snowden, A.G. Gu, S.CS. Lai, KM. Kelvey, N. Ebejer, M.A.O. Connell,
AW. Colburn, P.R. Unwin, Scanning electrochemical cell microscopy: theory
and experiment for quantitative high resolution spatially-resolved voltam-
metry and simultaneous ion-conductance measurements, Anal. Chem. 84
(2012) 2483—2491, https://doi.org/10.1021/ac203195h.

C.H. Chen, L. Jacobse, K. McKelvey, S.C.S. Lai, M.T.M. Koper, P.R. Unwin, Vol-
tammetric scanning electrochemical cell microscopy: dynamic imaging of
hydrazine electro-oxidation on platinum electrodes, Anal. Chem. 87 (2015)
5782—5789, https://doi.org/10.1021/acs.analchem.5b00988.

M.M. Lohrengel, A. Moehring, M. Pilaski, Capillary-based droplet cells: limits
and new aspects, Electrochim. Acta 47 (2001) 137—141, https://doi.org/
10.1016/S0013-4686(01)00570-9.

J. Ustarroz, M. Kang, E. Bullions, P.R. Unwin, Impact and oxidation of single
silver nanoparticles at electrode surfaces: one shot versus multiple events,
Chem. Sci. 8 (2016) 1841—1853, https://doi.org/10.1039/C65C04483B.

C.L. Bentley, M. Kang, P.R. Unwin, Time-resolved detection of surface oxide
formation at individual gold nanoparticles: role in electrocatalysis and new
approach for sizing by electrochemical impacts, J. Am. Chem. Soc. 138 (2016)
12755—12758, https://doi.org/10.1021/jacs.6b08124.

M. Kang, D. Perry, Y.R. Kim, AW. Colburn, R.A. Lazenby, P.R. Unwin, Time-
resolved detection and analysis of single nanoparticle electrocatalytic im-
pacts, J. Am. Chem. Soc. 137 (2015) 10902—10905, https://doi.org/10.1021/
jacs.5b05856.

CH. Chen, E.R. Ravenhill, D. Momotenko, Y.R. Kim, S.C.S. Lai, P.R. Unwin,
Impact of surface chemistry on nanoparticle-electrode interactions in the
electrochemical detection of nanoparticle collisions, Langmuir 31 (2015)
11932—-11942, https://doi.org/10.1021/acs.langmuir.5b03033.

S.EF. Kleijn, S.C.S. Lai, T.S. Miller, Al Yanson, M.T.M. Koper, P.R. Unwin,
Landing and catalytic characterization of individual nanoparticles on elec-
trode surfaces, ]. Am. Chem. Soc. 134 (2012) 18558—18561, https://doi.org/
10.1021/ja309220m.

M. Kang, D. Momotenko, A. Page, D. Perry, P.R. Unwin, Frontiers in nanoscale
electrochemical imaging: faster, multifunctional, and ultrasensitive, Langmuir
32 (2016) 7993—-8008, https://doi.org/10.1021/acs.langmuir.6b01932.

H. Krawiec, V. Vignal, R. Akid, Numerical modelling of the electrochemical
behaviour of 316L stainless steel based upon static and dynamic experimental
microcapillary-based techniques, Electrochim. Acta 53 (2008) 5252—5259,
https://doi.org/10.1016/j.electacta.2008.02.063.

C.G. Williams, M.A. Edwards, A.L. Colley, J.V. Macpherson, P.R. Unwin, Scan-
ning micropipet contact method for high-resolution imaging of electrode
surface redox activity, Anal. Chem. 81 (2009) 2486—2495, https://doi.org/
10.1021/ac802114r.

N. Birbilis, B.N. Padgett, R.G. Buchheit, Limitations in microelectrochemical
capillary cell testing and transformation of electrochemical transients for
acquisition of microcell impedance data, Electrochim. Acta 50 (2005)
3536—3544, https://doi.org/10.1016/j.electacta.2005.01.010.

F. Arjmand, A. Adriaens, Microcapillary electrochemical droplet cells: appli-
cations in solid-state surface analysis, J. Solid State Electrochem. 18 (2014)
17791788, https://doi.org/10.1007/s10008-014-2413-3.

T. Suter, R.C. Alkire, Microelectrochemical studies of pit initiation at single
inclusions in Al 2024-T3, ]. Electrochem. Soc. 148 (2001) B36, https://doi.org/
10.1149/1.1344530.

X.L. Zhang, Z.H. Jiang, Z.P. Yao, Y. Song, Z.D. Wu, Effects of scan rate on the


https://doi.org/10.1016/S1369-7021(08)70206-2
https://doi.org/10.1016/j.electacta.2016.01.099
https://doi.org/10.5006/2354
https://doi.org/10.1146/annurev-anchem-062012-092650
https://doi.org/10.1016/0013-4686(95)00072-M
https://doi.org/10.1016/0013-4686(95)00072-M
https://doi.org/10.1016/S0013-4686(70)01783-8
https://doi.org/10.1016/S0013-4686(70)01783-8
https://doi.org/10.1016/S0013-4686(98)00025-5
https://doi.org/10.1016/S0013-4686(98)00025-5
https://doi.org/10.1149/1.1474432
https://doi.org/10.1149/1.1474432
https://doi.org/10.1016/S0010-938X(00)00088-3
https://doi.org/10.1016/j.msea.2003.12.013
https://doi.org/10.1149/1.2218762
https://doi.org/10.1149/1.2218762
https://doi.org/10.1016/S0013-4686(03)00379-7
https://doi.org/10.1016/S0013-4686(03)00379-7
https://doi.org/10.1149/1.1869984
https://doi.org/10.1149/1.1869984
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref14
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref14
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref14
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref14
https://doi.org/10.1149/1.2096429
https://doi.org/10.1149/1.2096429
https://doi.org/10.1016/j.elecom.2010.10.031
https://doi.org/10.1149/1.1394028
https://doi.org/10.1007/s11665-011-9899-y
https://doi.org/10.1007/s11665-011-9899-y
https://doi.org/10.1016/j.elecom.2004.09.022
https://doi.org/10.1016/j.elecom.2014.11.017
https://doi.org/10.1016/j.elecom.2014.11.017
https://doi.org/10.1179/000705972798323297
https://doi.org/10.1179/000705972798323297
https://doi.org/10.1016/j.coelec.2017.06.011
https://doi.org/10.1021/jacs.7b09355
https://doi.org/10.1021/jacs.7b09355
https://doi.org/10.1039/C8FD00028J
https://doi.org/10.1021/ac102191u
https://doi.org/10.1021/ac102191u
https://doi.org/10.1021/acs.accounts.6b00301
https://doi.org/10.1039/C7SC02545A
https://doi.org/10.1002/anie.201712679
https://doi.org/10.1016/S0261-3069
https://doi.org/10.1016/S0261-3069
https://doi.org/10.1016/j.corsci.2008.10.025
https://doi.org/10.1016/j.corsci.2008.10.025
https://doi.org/10.1021/acs.analchem.8b01588
https://doi.org/10.1021/ac203195h
https://doi.org/10.1021/acs.analchem.5b00988
https://doi.org/10.1016/S0013-4686(01)00570-9
https://doi.org/10.1016/S0013-4686(01)00570-9
https://doi.org/10.1039/C6SC04483B
https://doi.org/10.1021/jacs.6b08124
https://doi.org/10.1021/jacs.5b05856
https://doi.org/10.1021/jacs.5b05856
https://doi.org/10.1021/acs.langmuir.5b03033
https://doi.org/10.1021/ja309220m
https://doi.org/10.1021/ja309220m
https://doi.org/10.1021/acs.langmuir.6b01932
https://doi.org/10.1016/j.electacta.2008.02.063
https://doi.org/10.1021/ac802114r
https://doi.org/10.1021/ac802114r
https://doi.org/10.1016/j.electacta.2005.01.010
https://doi.org/10.1007/s10008-014-2413-3
https://doi.org/10.1149/1.1344530
https://doi.org/10.1149/1.1344530

88

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

L.C. Yule et al. / Electrochimica Acta 298 (2019) 80—88

potentiodynamic polarization curve obtained to determine the Tafel slopes
and corrosion current density, Corros. Sci. 51 (2009) 581—587, https://doi.org/
10.1016/j.corsci.2008.12.005.

ASTM G102-89(2015)e1, Standard Practice for Calculation of Corrosion Rates
and Related Information from Electrochemical Measurements, West Con-
shohocken, PA, 2015, https://doi.org/10.1520/G0102-89R15E01.

M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions. IV.
Establishment and Interpretation of Potential-pH Equilibrium Diagrams, first
ed., Pergamon Press, London, 1966.

C.-H. Chen, K.E. Meadows, A. Cuharuc, S.C.S. Lai, P.R. Unwin, High resolution
mapping of oxygen reduction reaction kinetics at polycrystalline platinum
electrodes, Phys. Chem. Chem. Phys. 16 (2014) 18545, https://doi.org/
10.1039/C4CPO1511H.

M. Pourbaix, Lectures on Electrochemical Corrosion, first ed., Springer US,
1973 https://doi.org/10.1007/978-1-4684-1806-4.

M.G. Fontana, Corrosion Engineering, third ed., McGraw-Hill Inc, 1986.

A. Schreiber, J.W. Schultze, M.M. Lohrengel, F. Kirmdn, E. Kidlmdn, Grain
dependent electrochemical investigations on pure iron in acetate buffer pH
6.0, Electrochim. Acta 51 (2006) 2625—2630, https://doi.org/10.1016/
j.electacta.2005.07.052.

A. Schreiber, C. Rosenkranz, M.M. Lohrengel, Grain-dependent anodic disso-
lution of iron, Electrochim. Acta 52 (2007) 7738—7745, https://doi.org/
10.1016/j.electacta.2006.12.062.

M. Seo, M. Chiba, Nano-mechano-electrochemistry of passive metal surfaces,
Electrochim. Acta 47 (2001) 319-325, https://doi.org/10.1016/S0013-
4686(01)00577-1.

M. Chiba, M. Seo, Mechanoelectrochemical properties of passive iron surfaces
evaluated by an in situ nanoscratching test, J. Electrochem. Soc. 150 (2003)
B525, https://doi.org/10.1149/1.1615994.

V. Rault, V. Vignal, H. Krawiec, F. Dufour, Quantitative assessment of local
misorientations and pitting corrosion behaviour of pearlitic steel using elec-
tron backscattered diffraction and microcapillary techniques, Corros. Sci. 100
(2015) 667—671, https://doi.org/10.1016/j.corsci.2015.08.002.

KA. Lill, AW. Hassel, G. Frommeyer, M. Stratmann, Scanning droplet cell

[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

investigations on single grains of a FeAlCr light weight ferritic steel, Electro-
chim. Acta 51 (2005) 978-983, https://doi.org/10.1016/
j-electacta.2005.05.068.

A. Shahryari, J.A. Szpunar, S. Omanovic, The influence of crystallographic
orientation distribution on 316LVM stainless steel pitting behavior, Corros.
Sci. 51 (2009) 677—682, https://doi.org/10.1016/j.corsci.2008.12.019.

H. Krawiec, Z. Szklarz, Combining the Electrochemical Microcell Technique
and the Electron Backscatter Diffraction method to study the electrochemical
behaviour of polycrystalline aluminium in sodium chloride solution, Elec-
trochim.  Acta 203  (2016) 426-438,  https://doi.org/10.1016/
j-electacta.2016.03.030.

B.D.B. Aaronson, C.H. Chen, H. Li, M.T.M. Koper, S.C.S. Lai, P.R. Unwin, Pseudo-
single-crystal electrochemistry on polycrystalline electrodes: visualizing ac-
tivity at grains and grain boundaries on platinum for the Fe 2-+/Fe3+ redox
reaction, J. Am. Chem. Soc. 135 (2013) 3873—3880, https://doi.org/10.1021/
ja310632k.

K. Fushimi, M. Seo, An SECM observation of dissolution distribution of ferrous
or ferric ion from a polycrystalline iron electrode, Electrochim. Acta 47 (2001)
121-127, https://doi.org/10.1016/S0013-4686(01)00557-6.

AlJ. Davenport, LJ. Oblonsky, M.P. Ryan, M.F. Toney, The structure of the
passive film that forms on iron in aqueous environments, J. Electrochem. Soc.
147 (2000) 2162—2173, https://doi.org/10.1149/1.1393502.

D. Dwivedi, K. Lepkova, T. Becker, Carbon steel corrosion: a review of key
surface properties and characterization methods, RSC Adv. 7 (2017)
4580—4610, https://doi.org/10.1039/C6RA25094G.

G.S. Eklund, Initiation of pitting at sulfide inclusions in stainless steel,
J. Electrochem. Soc. 121 (1974) 467, https://doi.org/10.1149/1.2401840.

G. Wranglen, Pitting and sulphide inclusions in steel, Corros. Sci. 14 (1974)
331-349, https://doi.org/10.1016/S0010-938X(74)80047-8.

E.G. Webb, T. Suter, R.C. Alkire, Microelectrochemical measurements of the
dissolution of single MnS inclusions, and the prediction of the critical con-
ditions for pit initiation on stainless steel, ]. Electrochem. Soc. 148 (2001)
B186—B195, https://doi.org/10.1149/1.1360205.


https://doi.org/10.1016/j.corsci.2008.12.005
https://doi.org/10.1016/j.corsci.2008.12.005
https://doi.org/10.1520/G0102-89R15E01
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref48
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref48
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref48
https://doi.org/10.1039/C4CP01511H
https://doi.org/10.1039/C4CP01511H
https://doi.org/10.1007/978-1-4684-1806-4
http://refhub.elsevier.com/S0013-4686(18)32752-X/sref51
https://doi.org/10.1016/j.electacta.2005.07.052
https://doi.org/10.1016/j.electacta.2005.07.052
https://doi.org/10.1016/j.electacta.2006.12.062
https://doi.org/10.1016/j.electacta.2006.12.062
https://doi.org/10.1016/S0013-4686(01)00577-1
https://doi.org/10.1016/S0013-4686(01)00577-1
https://doi.org/10.1149/1.1615994
https://doi.org/10.1016/j.corsci.2015.08.002
https://doi.org/10.1016/j.electacta.2005.05.068
https://doi.org/10.1016/j.electacta.2005.05.068
https://doi.org/10.1016/j.corsci.2008.12.019
https://doi.org/10.1016/j.electacta.2016.03.030
https://doi.org/10.1016/j.electacta.2016.03.030
https://doi.org/10.1021/ja310632k
https://doi.org/10.1021/ja310632k
https://doi.org/10.1016/S0013-4686(01)00557-6
https://doi.org/10.1149/1.1393502
https://doi.org/10.1039/C6RA25094G
https://doi.org/10.1149/1.2401840
https://doi.org/10.1016/S0010-938X(74)80047-8
https://doi.org/10.1149/1.1360205

	Scanning electrochemical cell microscopy: A versatile method for highly localised corrosion related measurements on metal s ...
	1. Introduction
	2. Experimental
	3. Results and discussion
	4. Conclusions
	Acknowledgements
	References


