9,941 research outputs found

    Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    Full text link
    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law which is strictly valid only for degenerate systems and give an estimate for its valid scope of application towards lower densities

    Progress of the Felsenkeller shallow-underground accelerator for nuclear astrophysics

    Full text link
    Low-background experiments with stable ion beams are an important tool for putting the model of stellar hydrogen, helium, and carbon burning on a solid experimental foundation. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso, using a 0.4 MV accelerator. In the present contribution, the status of the project for a higher-energy underground accelerator is reviewed. Two tunnels of the Felsenkeller underground site in Dresden, Germany, are currently being refurbished for the installation of a 5 MV high-current Pelletron accelerator. Construction work is on schedule and expected to complete in August 2017. The accelerator will provide intense, 50 uA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of Nuclei in the Cosmos XIV, 19-24 June 2016, Niigata/Japa

    Deterministic Partial Differential Equation Model for Dose Calculation in Electron Radiotherapy

    Full text link
    Treatment with high energy ionizing radiation is one of the main methods in modern cancer therapy that is in clinical use. During the last decades, two main approaches to dose calculation were used, Monte Carlo simulations and semi-empirical models based on Fermi-Eyges theory. A third way to dose calculation has only recently attracted attention in the medical physics community. This approach is based on the deterministic kinetic equations of radiative transfer. Starting from these, we derive a macroscopic partial differential equation model for electron transport in tissue. This model involves an angular closure in the phase space. It is exact for the free-streaming and the isotropic regime. We solve it numerically by a newly developed HLLC scheme based on [BerCharDub], that exactly preserves key properties of the analytical solution on the discrete level. Several numerical results for test cases from the medical physics literature are presented.Comment: 20 pages, 7 figure

    High Pressure Insulator-Metal Transition in Molecular Fluid Oxygen

    Full text link
    We report the first experimental evidence for a metallic phase in fluid molecular oxygen. Our electrical conductivity measurements of fluid oxygen under dynamic quasi-isentropic compression show that a non-metal/metal transition occurs at 3.4 fold compression, 4500 K and 1.2 Mbar. We discuss the main features of the electrical conductivity dependence on density and temperature and give an interpretation of the nature of the electrical transport mechanisms in fluid oxygen at these extreme conditions.Comment: RevTeX, 4 figure

    Scaling of the Conductivity with Temperature and Uniaxial Stress in Si:B at the Metal-Insulator Transition

    Full text link
    Using uniaxial stress to tune Si:B through the metal-insulator transition we find the conductivity at low temperatures shows an excellent fit to scaling with temperature and stress on both sides of the transition. The scaling functions yield the conductivity in the metallic and insulating phases, and allow a reliable determination of the temperature dependence in the critical regions on both sides of the transition

    Missing 2k_F Response for Composite Fermions in Phonon Drag

    Full text link
    The response of composite Fermions to large wavevector scattering has been studied through phonon drag measurements. While the response retains qualitative features of the electron system at zero magnetic field, notable discrepancies develop as the system is varied from a half-filled Landau level by changing density or field. These deviations, which appear to be inconsistent with the current picture of composite Fermions, are absent if half-filling is maintained while changing density. There remains, however, a clear deviation from the temperature dependence anticipated for 2k_F scattering.Comment: 4 pages, 3 figures. Submitted to Phys. Rev. Let

    The Effect of Splayed Pins on Vortex Creep and Critical Currents

    Full text link
    We study the effects of splayed columnar pins on the vortex motion using realistic London Langevin simulations. At low currents vortex creep is strongly suppressed, whereas the critical current j_c is enhanced only moderately. Splaying the pins generates an increasing energy barrier against vortex hopping, and leads to the forced entanglement of vortices, both of which suppress creep efficiently. On the other hand splaying enhances kink nucleation and introduces intersecting pins, which cut off the energy barriers. Thus the j_c enhancement is strongly parameter sensitive. We also characterize the angle dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure

    Section Extension from Hyperbolic Geometry of Punctured Disk and Holomorphic Family of Flat Bundles

    Full text link
    The construction of sections of bundles with prescribed jet values plays a fundamental role in problems of algebraic and complex geometry. When the jet values are prescribed on a positive dimensional subvariety, it is handled by theorems of Ohsawa-Takegoshi type which give extension of line bundle valued square-integrable top-degree holomorphic forms from the fiber at the origin of a family of complex manifolds over the open unit 1-disk when the curvature of the metric of line bundle is semipositive. We prove here an extension result when the curvature of the line bundle is only semipositive on each fiber with negativity on the total space assumed bounded from below and the connection of the metric locally bounded, if a square-integrable extension is known to be possible over a double point at the origin. It is a Hensel-lemma-type result analogous to Artin's application of the generalized implicit function theorem to the theory of obstruction in deformation theory. The motivation is the need in the abundance conjecture to construct pluricanonical sections from flatly twisted pluricanonical sections. We also give here a new approach to the original theorem of Ohsawa-Takegoshi by using the hyperbolic geometry of the punctured open unit 1-disk to reduce the original theorem of Ohsawa-Takegoshi to a simple application of the standard method of constructing holomorphic functions by solving the d-bar equation with cut-off functions and additional blowup weight functions

    A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam

    Full text link
    The paper reports on a high precision equipment designed to modify over 3-dimensions (3D) by means of high-energy gold ions the local properties of thin and thick films. A target-moving system aimed at creating patterns across the volume is driven by an x-y writing protocol that allows one to modify beam sensitive samples over micrometer-size regions of whatever shape. The apparatus has a mechanical resolution of 15 nm. The issue of the local fluence measurement has been particularly addressed. The setup has been checked by means of different geometries patterned on beam sensitive sheets as well as on superconducting materials. In the last case the 3D modification consists of amorphous nanostructures. The nanostructures create zones with different dissipative properties with respect to the virgin regions. The main analysis method consists of magneto-optical imaging that provides local information on the electrodynamics of the modified zones. Features typical of non-linear current flow hint at which pattern geometry is more functional to applications in the framework of nanostructures across superconducting films.Comment: 7 page

    Wetting transitions of Ne

    Full text link
    We report studies of the wetting behavior of Ne on very weakly attractive surfaces, carried out with the Grand Canonical Monte Carlo method. The Ne-Ne interaction was taken to be of Lennard-Jones form, while the Ne-surface interaction was derived from an ab initio calculation of Chizmeshya et al. Nonwetting behavior was found for Li, Rb, and Cs in the temperature regime explored (i.e., T < 42 K). Drying behavior was manifested in a depleted fluid density near the Cs surface. In contrast, for the case of Mg (a more attractive potential) a prewetting transition was found near T= 28 K. This temperature was found to shift slightly when a corrugated potential was used instead of a uniform potential. The isotherm shape and the density profiles did not differ qualitatively between these cases.Comment: 22 pages, 12 figures, submitted to Phys. Rev.
    corecore