1,196 research outputs found

    Two Component Heat Diffusion Observed in CMR Manganites

    Full text link
    We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy, we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.Comment: 6 pages, 5 figures http://link.aps.org/doi/10.1103/PhysRevB.81.064434 v2: Abstract correcte

    The 14C(n,g) cross section between 10 keV and 1 MeV

    Get PDF
    The neutron capture cross section of 14C is of relevance for several nucleosynthesis scenarios such as inhomogeneous Big Bang models, neutron induced CNO cycles, and neutrino driven wind models for the r process. The 14C(n,g) reaction is also important for the validation of the Coulomb dissociation method, where the (n,g) cross section can be indirectly obtained via the time-reversed process. So far, the example of 14C is the only case with neutrons where both, direct measurement and indirect Coulomb dissociation, have been applied. Unfortunately, the interpretation is obscured by discrepancies between several experiments and theory. Therefore, we report on new direct measurements of the 14C(n,g) reaction with neutron energies ranging from 20 to 800 keV

    Phase-field modelling of interface failure in brittle materials

    Get PDF
    A phase-field approach is proposed for interface failure between two possibly dissimilar materials. The discrete adhesive interface is regularised over a finite width. Due to the use of a regularised crack model for the bulk material, an interaction between the length scales of the crack and the interface can occur. An analytic one-dimensional analysis has been carried out to quantify this effect and a correction is proposed, which compensates influences due to the regularisation in the bulk material. For multi-dimensional analyses this approach cannot be used straightforwardly, as is shown, and a study has been undertaken to numerically quantify the compensation factor due to the interaction. The aim is to obtain reliable and universally applicable results for crack propagation along interfaces between dissimilar materials, such that they are independent from the regularisation width of the interface. The method has been tested and validated on three benchmark problems. The compensation is particularly relevant for phase-field analyses in heterogeneous materials, where cohesive failure in the constituent materials as well as adhesive failure at interfaces play a role

    Синтез и свойства реагентов на основе иодзамещенных гидроксиполиэтил бензоатов

    Get PDF
    Поиск новых органических производных иода и изучение препаративных возможностей данных соединений в окислительных процессах позволит ввести в практику органического синтеза новые реагенты для окисления. В результате работы получены новые соединения - иодзамещенные гидроксиполиэтил бензоаты. При окислении данных соединений будут получены водорастворимые соединения поливалентного иода, которые в свою очередь должны проявить свойства мягких окислителей в окислительных превращениях спиртов. Таким образом, становится актуальным синтез и изучение препаративных возможностей легко извлекаемых реагентов с требуемой окислительной активностью.The search for new organic derivatives of iodine and the study of the preparative capabilities of these compounds in oxidative processes will make it possible to introduce new reagents for oxidation into the practice of organic synthesis. As a result of the work, new compounds — iodosubstituted hydroxypolyethyl benzoates — were obtained. During the oxidation of these compounds, water-soluble compounds of polyvalent iodine will be obtained, which in turn should exhibit the properties of soft oxidizing agents in the oxidative transformations of alcohols. Thus, the synthesis and study of the preparative capabilities of easily recoverable reagents with the required oxidative activity becomes relevant

    On the applicability of thermoforming characterization and simulation approaches to glass mat thermoplastic composites

    Get PDF
    Chopped fiber composite materials offer the potential to be used for complex geometries, including local thickness changes, ribs and beads, offering significant potential for functional lightweighting. Depending on the initial mold coverage and flowability of the material, the processing behaves either more like a compression molding or a thermoforming process. The latter is applicable to high initial mold coverages and includes typical thermoforming defects such as local wrinkling. Such defects are not predictable by conventional compression molding simulation approaches usually adopted for this material class. Therefore, thermoforming characterization and simulation approaches and their applicability to glass mat thermoplastic (47 vol.% long glass fiber, Tepex Flowcore) for high initial mold coverages is investigated. Abaqus in combination with several user-subroutines is applied. Valid material characterization results from torsion bar and rheometer bending tests are obtained and applied to an automotive structure in thermoforming simulation. Results indicate that the high stiffness and high viscosity captured by the rheometer bending test at low shear-rates are necessary to reproduce the wrinkling behavior observed in the experimental results. Discrepancy is most likely reducible to thermomechanical effects, and that the modelling approach does not account for thickness deformation due to transverse compression

    Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy

    Full text link
    The gas circulation loop LOOPINO has been set up and commissioned at Tritium Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium mixtures under conditions similar to the inner loop system of the neutrino-mass experiment KATRIN, which is currently under construction. A custom-made interface is used to connect the tritium containing measurement cell, located inside a glove box, with the Raman setup standing on the outside. A tritium sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more than three weeks with a total throughput of 770 g of tritium. Compositional changes in the sample and the formation of tritiated and deuterated methanes CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen isotope exchange reactions and gas-wall interactions, due to tritium {\beta} decay. A precision of 0.1% was achieved for the monitoring of the T_2 Q_1-branch, which fulfills the requirements for the KATRIN experiment and demonstrates the feasibility of high-precision Raman measurements with tritium inside a glove box

    Electron correlation vs. stabilization: A two-electron model atom in an intense laser pulse

    Full text link
    We study numerically stabilization against ionization of a fully correlated two-electron model atom in an intense laser pulse. We concentrate on two frequency regimes: very high frequency, where the photon energy exceeds both, the ionization potential of the outer {\em and} the inner electron, and an intermediate frequency where, from a ``single active electron''-point of view the outer electron is expected to stabilize but the inner one is not. Our results reveal that correlation reduces stabilization when compared to results from single active electron-calculations. However, despite this destabilizing effect of electron correlation we still observe a decreasing ionization probability within a certain intensity domain in the high-frequency case. We compare our results from the fully correlated simulations with those from simpler, approximate models. This is useful for future work on ``real'' more-than-one electron atoms, not yet accessible to numerical {\em ab initio} methods.Comment: 8 pages, 8 figures in an extra ps-file, submitted to Phys. Rev. A, updated references and shortened introductio
    corecore