378 research outputs found

    Novel intracellular mechanisms of NMDA receptor-dependent spinal nociceptive plasticity

    Get PDF
    Prolonged activation of spinal NMDA receptors, after peripheral inflammation or nerve damage, can activate intracellular signalling cascades leading to plastic changes in synaptic transmission. This results in central sensitization of dorsal horn sensory neurones and manifests in patients as increased sensitivity to painful stimuli (hyperalgesia), and pain resulting from normally non-painful tactile stimuli (allodynia). Therefore, targeting NMDA-mediated intracellular signalling pathways could be a successful analgesic strategy, potentially devoid of side-effects associated with receptor blockade. NMDA receptors bind to the intracellular scaffold protein PSD-95, which couples the receptor to cytoplasmic effector pathways. The role of this coupling in spinal sensory transmission and nociceptive plasticity was investigated using biochemical, electrophysiological and behavioural methods. Disruption of binding between PSD-95 and NR2B subunits of NMDA receptors was achieved through the use of a decoy mimetic peptide, Tat-NR2B9c. I show that Tat-NR2B9c selectively reduces wind-up of dorsal horn wide dynamic range neurones and prevents both neuronal and behavioural measures of formalin-induced central sensitization. In the spinal nerve ligation model of chronic pain, Tat-NR2B9c reduced neuronal responses to mechanical and thermal stimulation and was able to reverse behavioural mechanical and cold hypersensitivity, clinical signs of neuropathic pain. In addition, the roles of two kinases, atypical PKCζ/PKMζ and PI3K, known to be involved in hippocampal LTP, were investigated using biochemical, immunohistochemical, electrophysiological and behavioural measures. I found that activation of spinal PKCζ/PKMζ is dependent on coupling between NR2B-subtype receptors and PSD-95, and contributes to central sensitization of dorsal horn neurones. PI3K was also found to be active in the NMDA-dependent formalin model and regulates various intracellular mechanisms in central sensitization. Finally, I investigated the role of DDAH-1, an enzyme which is involved in the regulation of nNOS, in spinal nociceptive plasticity. DDAH-1 inhibition reduced neuronal wind-up and both neuronal and behavioural measures of formalin-induced central sensitization. These findings further our understanding of NMDA-dependent spinal nociceptive plasticity. Disrupting the interaction between NR2B-containing NMDA receptors and PSD-95 or inhibition of downstream intracellular signalling pathways may be successful analgesic strategies for the treatment of chronic pain

    Editorial : Predictive mechanisms in action, perception, cognition, and clinical disorders

    Get PDF
    Acknowledgments The authors would like to acknowledge their funding sources (NIH F32 MH117933 to AD, Alon Fellowship to LR).Peer reviewedPublisher PD

    Automated Gaze-Based Mind Wandering Detection during Computerized Learning in Classrooms

    Get PDF
    We investigate the use of commercial off-the-shelf (COTS) eye-trackers to automatically detect mind wandering—a phenomenon involving a shift in attention from task-related to task-unrelated thoughts—during computerized learning. Study 1 (N = 135 high-school students) tested the feasibility of COTS eye tracking while students learn biology with an intelligent tutoring system called GuruTutor in their classroom. We could successfully track eye gaze in 75% (both eyes tracked) and 95% (one eye tracked) of the cases for 85% of the sessions where gaze was successfully recorded. In Study 2, we used this data to build automated student-independent detectors of mind wandering, obtaining accuracies (mind wandering F1 = 0.59) substantially better than chance (F1 = 0.24). Study 3 investigated context-generalizability of mind wandering detectors, finding that models trained on data collected in a controlled laboratory more successfully generalized to the classroom than the reverse. Study 4 investigated gaze- and video- based mind wandering detection, finding that gaze-based detection was superior and multimodal detection yielded an improvement in limited circumstances. We tested live mind wandering detection on a new sample of 39 students in Study 5 and found that detection accuracy (mind wandering F1 = 0.40) was considerably above chance (F1 = 0.24), albeit lower than offline detection accuracy from Study 1 (F1 = 0.59), a finding attributable to handling of missing data. We discuss our next steps towards developing gaze-based attention-aware learning technologies to increase engagement and learning by combating mind wandering in classroom contexts

    Pharmacokinetics of the cyclosporine-ketoconazole interaction in dogs

    Get PDF
    Numerous clinical reports have documented an increase in trough blood concentrations of cyclosporine in transplant recipients treated concomitantly with ketoconazole. The objective of this study was to elucidate the mechanism(s) underlying the cyclosporine-ketoconazole interaction using a choledochoureterostomy dog model. Five male beagle dogs received a 4 mg/kg, i.v. bolus dose of cyclosporine either alone or on day seven of a 10-day, 13 mg/kg/day, oral dosing regimen of ketoconazole. Blood samples were collected prior to and at predetermined times for 60 hrs after the cyclosporine dose, while the bile/urine mixture was collected quantitatively for 96 hours after the cyclosporine dose. Ketoconazole decreased the systemic clearance of cyclosporine from 7.0 ml/min/kg to 2.5 ml/min/kg. The terminal disposition rate constant was also decreased significantly from 0.0794 to 0.0354 hrs-1. Ketoconazole caused no significant changes in cyclosporine steady state volume of distribution, or plasma unbound fraction. Ketoconazole did not significantly alter the excretion of cyclosporine and various cyclosporine metabolites in the bile/urine mixture. Inhibition of hepatic drug metabolizing enzymes appears to be the primary reason for the ketoconazole induced elevation in cyclosporine concentration

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Neurocognitive mechanisms of co‐occurring math difficulties in dyslexia: Differences in executive function and visuospatial processing

    Get PDF
    Children with dyslexia frequently also struggle with math. However, studies of reading disability (RD) rarely assess math skill, and the neurocognitive mechanisms underlying co-occurring reading and math disability (RD+MD) are not clear. The current study aimed to identify behavioral and neurocognitive factors associated with co-occurring MD among 86 children with RD. Within this sample, 43% had co-occurring RD+MD and 22% demonstrated a possible vulnerability in math, while 35% had no math difficulties (RD-Only). We investigated whether RD-Only and RD+MD students differed behaviorally in their phonological awareness, reading skills, or executive functions, as well as in the brain mechanisms underlying word reading and visuospatial working memory using functional magnetic resonance imaging (fMRI). The RD+MD group did not differ from RD-Only on behavioral or brain measures of phonological awareness related to speech or print. However, the RD+MD group demonstrated significantly worse working memory and processing speed performance than the RD-Only group. The RD+MD group also exhibited reduced brain activations for visuospatial working memory relative to RD-Only. Exploratory brain-behavior correlations along a broad spectrum of math ability revealed that stronger math skills were associated with greater activation in bilateral visual cortex. These converging neuro-behavioral findings suggest that poor executive functions in general, including differences in visuospatial working memory, are specifically associated with co-occurring MD in the context of RD

    Correction of some parmeters of homeostasis of patients with chronic non-specific cenricites, treated by magneto-therapy

    Get PDF
    120 patients with chronic non-specific cervicites general magneto-therapy were examined, 60 of them underwent general magneto-therapy. Magneto-therapy was found to induce significant reduction of pathogenic microorganism content in vaginal discharge and cervical canal, restoring normocenosis in 82,5% of patients. Magneto-therapy had clear positive influences on the local immunity parameters: the increase of lisocimic activity and Ig A level in secretion in the same time with IL-1, IL-6 and neutrophilic myeloperoxidase reduction in cervical mucosa was noted. Magneto-therapy was found to produce a systemic effect (normalization of lipid peroxidation and of antioxidant defense system). Obtained results allow to recommend magneto-therapy in complex treatment of chronic non-specific cervicitis.Обследовано 120 пациенток с хроническими неспецифическими цервицитами. 60 больным в комплексное противовоспалительное лечение была включена общая магнитотерапия (ОМТ). Данные бактериоскопического исследования продемонстрировали купирование проявлений неспецифического вагинита, восстановление нормоценозау 82,5% пациенток. ОМТ способствовала достоверному снижению содержания условно-патогенных микроорганизмов в отделяемом влагалища и цервикального канала, оказала выраженное позитивное влияние на параметры локального иммунитета - было отмечено увеличение лизоцимной активности, уровня IgA в секрете; содержание ИЛ-1, ИЛ-6 и миелопероксидазы нейтрофилов цервикальной слизи, напротив, снизилось. Общая магнитотерапии достигает и системного эффекта (нормализация показателей ПОЛ, антиоксидантной системы защиты)

    Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons

    Get PDF
    Although the role of the microtubule-binding domain of the tau protein in the modulation of microtubule assembly is widely established, other possible functions of this protein have been poorly investigated. We have analyzed the effect of adenovirally mediated expression of two fragments of the N-terminal portion - free of microtubule-binding domain - of the tau protein in cerebellar granule neurons (CGNs). We found that while the expression of the tau (1-230) fragment, as well as of full-length tau, inhibits the onset of apoptosis, the tau (1-44) fragment exerts a powerful toxic action on the same neurons. The antiapoptotic action of tau (1-230) is exerted at the level of Akt-mediated activation of the caspase cascade. On the other hand, the toxic action of the (1-44) fragment is not prevented by inhibitors of CGN apoptosis, but is fully inhibited by NMDA receptor antagonists. These findings point to a novel, physiological role of the N-terminal domain of tau, but also underlay that its possible proteolytic truncation mediated by apoptotic proteases may generate a highly toxic fragment that could contribute to neuronal death

    Consistency Analysis of Redundant Probe Sets on Affymetrix Three-Prime Expression Arrays and Applications to Differential mRNA Processing

    Get PDF
    Affymetrix three-prime expression microarrays contain thousands of redundant probe sets that interrogate different regions of the same gene. Differential expression analysis methods rarely consider probe redundancy, which can lead to inaccurate inference about overall gene expression or cause investigators to overlook potentially valuable information about differential regulation of variant mRNA products. We investigated the behaviour and consistency of redundant probe sets in a publicly-available data set containing samples from mouse brain amygdala and hippocampus and asked how applying filtering methods to the data affected consistency of results obtained from redundant probe sets. A genome-based filter that screens and groups probe sets according to their overlapping genomic alignments significantly improved redundant probe set consistency. Screening based on qualitative Present-Absent calls from MAS5 also improved consistency. However, even after applying these filters, many redundant probe sets showed significant fold-change differences relative to each other, suggesting differential regulation of alternative transcript production. Visual inspection of these loci using an interactive genome visualization tool (igb.bioviz.org) exposed thirty putative examples of differential regulation of alternative splicing or polyadenylation across brain regions in mouse. This work demonstrates how P/A-call and genome-based filtering can improve consistency among redundant probe sets while at the same time exposing possible differential regulation of RNA processing pathways across sample types
    corecore