769 research outputs found

    Introduction to the special section on dependable network computing

    Get PDF
    Dependable network computing is becoming a key part of our daily economic and social life. Every day, millions of users and businesses are utilizing the Internet infrastructure for real-time electronic commerce transactions, scheduling important events, and building relationships. While network traffic and the number of users are rapidly growing, the mean-time between failures (MTTF) is surprisingly short; according to recent studies, in the majority of Internet backbone paths, the MTTF is 28 days. This leads to a strong requirement for highly dependable networks, servers, and software systems. The challenge is to build interconnected systems, based on available technology, that are inexpensive, accessible, scalable, and dependable. This special section provides insights into a number of these exciting challenges

    Control aspects of the Schuchuli Village stand-alone photovoltaic power system

    Get PDF
    A photovoltaic power system in an Arizona Indian village was installed. The control subsystem of this photovoltaic power system was analyzed. The four major functions of the control subsystem are: (1) voltage regulation; (2) load management; (3) water pump control; and (4) system protection. The control subsystem functions flowcharts for the control subsystem operation, and a computer program that models the control subsystem are presented

    Myocardium wall thickness transducer and measuring method

    Get PDF
    A miniature transducer for measuring changes of thickness of the myocardium is described. The device is easily implantable without traumatizing the subject, without affecting the normal muscle behavior, and is removable and implantable at a different muscle location. Operating features of the device are described

    Catheter tip force transducer for cardiovascular research

    Get PDF
    A force transducer for measuring dynamic force activity within the heart of a subject essentially consists of a U-shaped beam of low elastic compliance material. Two lines extend from the beams's legs and a long coil spring is attached to the beam. A strain gauge is coupled to one of the beam's legs to sense deflections thereof. The beam with the tines and most of the spring are surrounded by a flexible tube, defining a catheter, which is insertable into a subject's heart through an appropriate artery. The tines are extractable from the catheter for implantation into the myocardium by pushing on the end of the spring which extends beyond the external end of the catheter

    Computing CMB Anisotropy in Compact Hyperbolic Spaces

    Get PDF
    The measurements of CMB anisotropy have opened up a window for probing the global topology of the universe on length scales comparable to and beyond the Hubble radius. For compact topologies, the two main effects on the CMB are: (1) the breaking of statistical isotropy in characteristic patterns determined by the photon geodesic structure of the manifold and (2) an infrared cutoff in the power spectrum of perturbations imposed by the finite spatial extent. We present a completely general scheme using the regularized method of images for calculating CMB anisotropy in models with nontrivial topology, and apply it to the computationally challenging compact hyperbolic topologies. This new technique eliminates the need for the difficult task of spatial eigenmode decomposition on these spaces. We estimate a Bayesian probability for a selection of models by confronting the theoretical pixel-pixel temperature correlation function with the COBE-DMR data. Our results demonstrate that strong constraints on compactness arise: if the universe is small compared to the `horizon' size, correlations appear in the maps that are irreconcilable with the observations. If the universe is of comparable size, the likelihood function is very dependent upon orientation of the manifold wrt the sky. While most orientations may be strongly ruled out, it sometimes happens that for a specific orientation the predicted correlation patterns are preferred over the conventional infinite models.Comment: 15 pages, LaTeX (IOP style included), 3 color figures (GIF) in separate files. Minor revision to match the version accepted in Class. Quantum Grav.: Proc. of Topology and Cosmology, Cleveland, 1997. The paper can be also downloaded from http://www.cita.utoronto.ca/~pogosyan/cwru_proc.ps.g

    Noncyclic covers of knot complements

    Full text link
    Hempel has shown that the fundamental groups of knot complements are residually finite. This implies that every nontrivial knot must have a finite-sheeted, noncyclic cover. We give an explicit bound, Φ(c)\Phi (c), such that if KK is a nontrivial knot in the three-sphere with a diagram with cc crossings and a particularly simple JSJ decomposition then the complement of KK has a finite-sheeted, noncyclic cover with at most Φ(c)\Phi (c) sheets.Comment: 29 pages, 8 figures, from Ph.D. thesis at Columbia University; Acknowledgments added; Content correcte

    In search of Nemesis

    Get PDF
    The parallax of all stars of visual magnitude greater than about 6.5 has already been measured. If Nemesis is a main-sequence star 1 parsec away, this requires Nemesis's mass to be less than about 0.4 solar masses. If it were less than about 0.05 solar masses its gravity would be too weak to trigger a comet storm. If Nemesis is on the main sequence, this mass range requires it to be a red dwarf. A red dwarf companion would probably have been missed by standard astronomical surveys. Nearby stars are usually found because they are bright or have high proper motion. However, Nemesis's proper motion would now be 0.01 arcsec/yr, and if it is a red dwarf its magnitude is about 10 - too dim to attract attention. Unfortunately, standard four-color photometry does not distinguish between red dwarfs and giants. So although surveys such as the Dearborn Red Star Catalog list stars by magnitude and spectral type, they do not identify the dwarfs. Every star of the correct spectral type and magnitude must be scrutinized. Our candidate list is a hybrid; candidate red stars are identified in the astrometrically poor Dearborn Red Star Catalog and their positions are corrected using the Hubble Guide Star Catalog. When errors in the Dearborn catalog make it impossible to identify the corresponding Hubble star, the fields are split so that we have one centering on each possible candidate. We are currently scrutinizing 3098 fields, which we believe contain all possible red dwarf candidates in the northern hemisphere. Since our last report the analysis and database software has been completely rebuilt to take advantage of updated hardware, to make the data more accessible, and to implement improved methods of data analysis. The software is now completed and we are eliminating stars every clear night

    Coronavirus Replicase-Reporter Fusions Provide Quantitative Analysis of Replication and Replication Complex Formation

    Get PDF
    The replication of coronaviruses occurs in association with multiple virus-induced membrane structures that evolve during the course of infection; however, the dynamics of this process remain poorly understood. Previous studies of coronavirus replication complex organization and protein interactions have utilized protein overexpression studies and immunofluorescence of fixed cells. Additionally, live-imaging studies of coronavirus replicase proteins have used fluorescent reporter molecules fused to replicase proteins, but expressed from nonnative locations, mostly late-transcribed subgenomic mRNAs, in the presence or absence of the native protein. Thus, the timing and targeting of native replicase proteins expressed in real time from native locations in the genome remain unknown. In this study, we tested whether reporter molecules could be expressed from the replicase polyprotein of murine hepatitis virus as fusions with nonstructural protein 2 or 3 and whether such reporters could define the targeting and activity of replicase proteins during infection. We demonstrate that the fusion of green fluorescent protein and firefly luciferase with either nonstructural protein 2 or 3 is tolerated and that these reporter-replicase fusions can be used to quantitate replication complex formation and virus replication. The results show that the replicase gene has flexibility to accommodate a foreign gene addition and can be used directly to study replicase complex formation and evolution during infection as well as to provide highly sensitive and specific markers for protein translation and genome replication

    The pre-WDVV ring of physics and its topology

    Full text link
    We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory, we give an elementary proof that the Whitehouse complex Δn\Delta_n is homotopy equivalent to a wedge of (n−2)!(n-2)! spheres of dimension n−4n-4. We also verify the Cohen-Macaulay property. Additionally, recurrences are given for the face enumeration of the complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table
    • …
    corecore