33 research outputs found

    Polar localization of plasma membrane Ca2+/Mg2+ ATPase correlates with the pattern of steady ionic currents in eggs of Lymnaea stagnalis and Bithynia tentaculata (Mollusca)

    Get PDF
    During extrusion of the first polar body in eggs of Lymnaea stagnalis and Bithynia tentaculata a localized Ca2+ /Mg2+ ATPase activity was detected, using Ando's enzyme-cytochemical method for electron microscopy [Ando et al. (1981) Acta Histochem Cytochem 14:705-726]. The enzyme activity was distributed in a polar fashion, along the cytoplasmic face of the plasma membrane. In the eggs of Lymnaea it was found only in the vegetal hemisphere, whereas in Bithynia eggs it was localized both in the vegetal hemisphere and at the animal pole. This pattern of enzyme activity corresponds to the polar pattern of transcellular ionic currents measured with the vibrating probe, which we showed to be partially carried or regulated by calcium [Zivkovic and Dohmen (1989) Biol Bull (Woods Hole) 176 (Suppl):103-109]. The characteristics of the ATPase were studied using a variety of approaches such as ion and substrate depletions and substitutions, addition of specific inhibitors of ATPase activity, treatment with EDTA/EGTA and electron energy-loss spectrometry. The results indicate that, in Lymnaea, there are at least two enzymatic entities. The first one is a Ca2+ /Mg2+ ATPase localized along the membrane and in the cortex of the vegetal hemisphere. The second one is a Ca2+-stimulated ATPase (calcium pump of the plasma membrane) localized in a small region of the membrane at the vegetal pole. We speculate that in the eggs of Lymnaea and Bithynia a functional relationship exists between the plasma-membrane-associated ATPase activity and the transcellular ionic currents measured in the same region

    Retinol Metabolism in the Mollusk Osilinus lineatus Indicates an Ancient Origin for Retinyl Ester Storage Capacity

    Get PDF
    Although retinoids have been reported to be present and active in vertebrates and invertebrates, the presence of mechanisms for retinoid storage in the form of retinyl esters, a key feature to maintain whole-organism retinoid homeostasis, have been considered to date a vertebrate innovation. Here we demonstrate for the first time the presence of retinol and retinyl esters in an invertebrate lophotrochozoan species, the gastropod mollusk Osilinus lineatus. Furthermore, through a pharmacological approach consisting of intramuscular injections of different retinoid precursors, we also demonstrate that the retinol esterification pathway is active in vivo in this species. Interestingly, retinol and retinyl esters were only detected in males, suggesting a gender-specific role for these compounds in the testis. Females, although lacking detectable levels of retinol or retinyl esters, also have the biochemical capacity to esterify retinol, but at a lower rate than males. The occurrence of retinyl ester storage capacity, together with the presence in males and females of active retinoids, i.e., retinoic acid isomers, indicates that O. lineatus has a well developed retinoid system. Hence, the present data strongly suggest that the capacity to maintain retinoid homeostasis has arisen earlier in Bilateria evolution than previously thought

    Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2ÎŒg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates.The study was funded by the Centre for Environment, Fisheries and Aquaculture Science (Cefas; https://www.cefas.co.uk) and by the University of Exeter (http://www.exeter.ac.uk)

    Calcium signalling during the cleavage period of zebrafish development

    No full text
    Imaging studies, using both luminescent and fluorescent Ca2+-sensitive reporters, have revealed that during the first few meroblastic cleavages of the large embryos of teleosts, localized elevations of intracellular Ca2+ accompany positioning, propagation, deepening and apposition of the cleavage furrows. Here, we will review the Ca2+ transients reported during the cleavage period in these embryos, with reference mainly to that of the zebrafish (Danio rerio). We will also present the latest findings that support the proposal that Ca2+ transients are an essential feature of embryonic cytokinesis. In addition, the potential upstream triggers and downstream targets of the different cytokinetic Ca2+ transients will be discussed. Finally, we will present a hypothetical model that summarizes what has been suggested to be the various roles of Ca2+ signalling during cytokinesis in teleost embryos

    Calcium waves

    No full text
    Waves through living systems are best characterized by their speeds at 20°C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1–10 and/or 10–20 nm s−1. All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2–2 Όm s−1 and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins
    corecore