8,451 research outputs found
A new dry biomedical electrode
Electronic circuitry contains new operational amplifier which incorporates monolithic super-gain transistors. Electrode does not provide voltage amplification; instead, it acts as current amplifier to make it possible to pick up electrical potentials from surface of highly resistant dry skin
Precedent and Justice
Precedent is the cornerstone of common law method. It is the core mechanism by which the common law reaches just outcomes. Through creation and application of precedent, common law seeks to produce justice. The appellate courts\u27 practice of issuing unpublished, non-precedential opinions has generated considerable discussion about the value of precedent, but that debate has centered on pragmatic and formalistic values. This essay argues that the practice of issuing non-precedential opinions does more than offend constitutional dictates and present pragmatic problems to the appellate system; abandoning precedent undermines justice itself. Issuance of the vast majority of decisions as nonprecedential tears the justice-seeking mechanism of precedent from the heart of our common law system
The Ermine and Woolsack: Disciplinary Proceedings Involving Judges, Attorney-Magistrates, and Other Judicial Figures
A Bayesian spatio-temporal model of panel design data: airborne particle number concentration in Brisbane, Australia
This paper outlines a methodology for semi-parametric spatio-temporal
modelling of data which is dense in time but sparse in space, obtained from a
split panel design, the most feasible approach to covering space and time with
limited equipment. The data are hourly averaged particle number concentration
(PNC) and were collected, as part of the Ultrafine Particles from Transport
Emissions and Child Health (UPTECH) project. Two weeks of continuous
measurements were taken at each of a number of government primary schools in
the Brisbane Metropolitan Area. The monitoring equipment was taken to each
school sequentially. The school data are augmented by data from long term
monitoring stations at three locations in Brisbane, Australia.
  Fitting the model helps describe the spatial and temporal variability at a
subset of the UPTECH schools and the long-term monitoring sites. The temporal
variation is modelled hierarchically with penalised random walk terms, one
common to all sites and a term accounting for the remaining temporal trend at
each site. Parameter estimates and their uncertainty are computed in a
computationally efficient approximate Bayesian inference environment, R-INLA.
  The temporal part of the model explains daily and weekly cycles in PNC at the
schools, which can be used to estimate the exposure of school children to
ultrafine particles (UFPs) emitted by vehicles. At each school and long-term
monitoring site, peaks in PNC can be attributed to the morning and afternoon
rush hour traffic and new particle formation events. The spatial component of
the model describes the school to school variation in mean PNC at each school
and within each school ground. It is shown how the spatial model can be
expanded to identify spatial patterns at the city scale with the inclusion of
more spatial locations.Comment: Draft of this paper presented at ISBA 2012 as poster, part of UPTECH
  projec
SNAP-8 third loop optimization
Eutectic sodium potassium and OS-124 considered as coolant fluids for SNAP-8 third loop - optimum loop operating parameter
Carbon Free Boston: Waste Technical Report
Part of a series of reports that includes:
Carbon Free Boston: Summary Report;
Carbon Free Boston: Social Equity Report;
Carbon Free Boston: Technical Summary;
Carbon Free Boston: Buildings Technical Report;
Carbon Free Boston: Transportation Technical Report;
Carbon Free Boston: Energy Technical Report;
Carbon Free Boston: Offsets Technical Report;
Available at http://sites.bu.edu/cfb/OVERVIEW:
For many people, their most perceptible interaction with their environmental footprint is through the
waste that they generate. On a daily basis people have numerous opportunities to decide whether to
recycle, compost or throwaway. In many cases, such options may not be present or apparent. Even
when such options are available, many lack the knowledge of how to correctly dispose of their waste,
leading to contamination of valuable recycling or compost streams. Once collected, people give little
thought to how their waste is treated. For Boston’s waste, plastic in the disposal stream acts becomes a
fossil fuel used to generate electricity. Organics in the waste stream have the potential to be used to
generate valuable renewable energy, while metals and electronics can be recycled to offset virgin
materials. However, challenges in global recycling markets are burdening municipalities, which are
experiencing higher costs to maintain their recycling.
The disposal of solid waste and wastewater both account for a large and visible anthropogenic impact
on human health and the environment. In terms of climate change, landfilling of solid waste and
wastewater treatment generated emissions of 131.5 Mt CO2e in 2016 or about two percent of total
United States GHG emissions that year. The combustion of solid waste contributed an additional 11.0 Mt
CO2e, over half of which (5.9 Mt CO2e) is attributable to the combustion of plastic [1]. In Massachusetts,
the GHG emissions from landfills (0.4 Mt CO2e), waste combustion (1.2 Mt CO2e), and wastewater (0.5
Mt CO2e) accounted for about 2.7 percent of the state’s gross GHG emissions in 2014 [2].
The City of Boston has begun exploring pathways to Zero Waste, a goal that seeks to systematically
redesign our waste management system that can simultaneously lead to a drastic reduction in emissions
from waste. The easiest way to achieve zero waste is to not generate it in the first place. This can start at
the source with the decision whether or not to consume a product. This is the intent behind banning
disposable items such as plastic bags that have more sustainable substitutes. When consumption occurs,
products must be designed in such a way that their lifecycle impacts and waste footprint are considered.
This includes making durable products, limiting the use of packaging or using organic packaging
materials, taking back goods at the end of their life, and designing products to ensure compatibility with
recycling systems. When reducing waste is unavoidable, efforts to increase recycling and organics
diversion becomes essential for achieving zero waste. [TRUNCATED]Published versio
- …
