@ https://ntrs.nasa.gov/search.jsp?R=19670013516 2020-03-16T18:34:18+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



.
,\ 10-047-008-1 - 475 TM 31&52 63—1-106
311, SNAP-8 DATE | hApril 1963 /-
w.o. ' 0743-05-2000
DIVISION cR-14213

TECHNICAL MEMORANDUM

E. F. Perez, F., R. Cleveland,

PREPARED BY: .~ ;
Lo Rico C)

ABSTRACT
> §NAP-8 THIRD LOOP OPTIMIZATION -

his report presents a summary of the investigations conducted to define
Eutectic NaK and 0S-12k

T
optimum operating parameters for the SNAP-8 Third Loop.
were considered as coolant fluids for this loop. A comparison is made between
the fluids on the basis of optimum equivalent weights. Also included are
analyses developed for optimizing design parameters for the heat exchanger,

condenser and the flat tube and fin radiator.

H %&2_3_4_ 5
g‘ d AGES) o

m;o ‘l‘nxo;% a 2 3:.9—-—’
Numagn) W

LIBRARY COPY

APR 14 1367

LEWIS LIBRARY, NASA
CLEVELAND, OHIO

APPROVED: M
DEPARTMENT HEAD G /\)m‘&____nmmmn,@tu’
. Wood + Ross

This document is considered preliminary and is subject to revision as
i . The general reader may

NOTE: i
analysis progresses and additional data are acquired
encounter internal reference not available to him,

' ! ‘COPY NO.

A




™ 345:63-1-106

SNAP-8 THIRD LOOP OPTIMIZATION

I. INTRODUCTION

This analysis was conducted to determine optimum third loop parameters
and to make weight comparisons for systems using 0S-124 and eutectic NaK as
third loop fluids. The result of this analysis was a consideration in selecting
NaK as the third loop fluid. The analysis was performed on a reference system
which included a mercury-to-coolant fluid heat exchanger condenser and a flat
tube~and-~fin space radiator.

From & preliminary cycle analysis it was determined that amn optimum weight
system could be obtained by having the mercury condensing temperature at a lower
level than would be practical from mercury pump NPSH requirements. Therefore,
condensing temperature and mercury subcooling were selected to satisfy the

mercury pump requirements and were held constant throughout these investigations.
II. DISCUSSION
A. THIRD ILOOP ANALYSIS

The third loop analysis was a parametric study in which operating
parameters and component design parameter. were optimized in order to determine
an optimum weight system for each of the fluids. The analysis was made by varying
the coolant flow rate and the radiator inlet temperature for a specified total
heat rejection load of 330 kw., The condenser and radiator were optimized for
each design point. In addition, pumping power equivalent weights were evaluated
and included in assessing component and system weights. The power equivalent
weight was based on an estimate of 200 1b of system weight per kilowatt of

electrical power.

Certain criteria were used in making this analysis. These criteria
are reviewed in the following discussion in order to qualify the analytical

results.
B. RADIATOR ANALYSIS

The radiator was considered to be a flat tube-and-fin configuration
for both 0S-124 and NaK. Because the radiator comprises a high percentage of the
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overall system weight, a method was developed for optimizing radiator parameters
in order to have a minimm -weight radiator for a given set of operating conditioms.
The radiator optimization analysis is included in Appendix A of this report.

The actual radiator weight calculations were made with an approximate analysis
which differed slightly from that described in Appendix A. An error analysis
vas made to determine the difference in results which could be expected if the
more exact analysis were used. The results showed that the maximum difference
in radiator weight could be approximately 2.6% and that the maximum difference
in projected area would be approximately 5.5%. These differences, however, do
not have a significant effect when making a relative comparison between two
fluids since the same analysis is used for both fluids.

Some of the significant radiator criteria which were applied in this

analysis are as follows:

1. Heat rejection load was 330 kw thermal

2, Optimum weight tapered fins were designed using the data of
D. B. Mackay and C. P. Bacha (Reference 1)

3. Incident heat flux from solar and planetary sources were
evaluated on the basis of a 500 mile earth orbit

b, Emissivity and absorhtivity of .85 and .60, respectively, were
used

Se Armor thickness for micrometeorite protection was evaluated
from a preliminary analysis using the Bjork penetration model
and micrometeorite data from Whipple. An armor thickness of
+320 in. was calculated. This armor thickness was kept con-
stant throughout these analyses

6. Radiator parameters were optimized in each case including tube
diameters and manifold diameters, lengths of tubes and manifolds,
number of tubes and fin dimensions,

c. CONDENSER ANALYSIS

1. 0S-124 Compact Fin and Plate Condenser

In the case of the organic 0S-124 coolant, the coolant film
coefficient is the controlling resistance to heat transfer. Because of the low
organic film coefficients it was decided to consider the use of a compact fin
and plate type heat exchanger in order to obtain as large a heat transfer area

as possible. Subsequently, an analysis was made on a concentric tube heat
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exchanger for one design point and the results of this analysis showed that com-
parable equivalent weights could be obtained with a heat exchanger of this type.
An analysis of the compact plate and fin type heat exchanger is covered in
Appendix B. The condensers were optimized for each design point. A typical
condenser optimization is shown in Figure 1 which caows the component weight
and pumping power equivalent weight as a function of coolant Reynolds number.

In evaluating NaK as a third loop coolaut fluid, a tube and
shell type heat exchanger condenser was considered. The analysis used for
evaluating the NaK condensers is described in Appendix C. The NaK condenser
was also optimized for each design point. Figure 2 shows a typical optimization

of the condenser as a function of NaK film coefficient and fliow rate.

III. RESULTS OF THIRD LOOP OPTIMIZATION ANALYSIS

In evaluating optimum operating and component design parameters, a number
of cases were computed. These cases consisted of a series of design points in
which the third loop flow rate and the radiator inlet temperature were varied.
First in order to determine the near optimum tube diameter for the radiator
tubes, some preliminary cases were computed in which the tube diameter was varied.
The results of these cases is shown on Figures 3 and 4 for 0S-124 and NaK
respectively. The optimum diameters were used in subsequent cases in which the

flow rate and radiator inlet temperature were varied.

The results of the 0S-124 and NaK optimization are summarized in Figures 4
and 5 respectively. These figures show the variation of equivalent weight
(including weight of radiator, condenser, subcooler, and equivalent weight of
pumping power) as a function of radiator inlet temperature and coolant flow rate.
It was concluded from this analysis that the third loop fluid could not be
selected on the basis of system weight since the system equivalent weights are
comparable, NaK was finally selected as the working fluid on the basis of other
considerations such as degradation of heat transfer properties and possible

decompositions of 0S-124. These considerations are discussed in Reference 2.

A summary of the optimum NaK condenser and radiator data is as follows:
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Fin and Tube Condenser

Tube length = = = = =« -~ = e m e 2,97 ft
Number of tubes = = = = « = = e = = = = a = - 78
Tube inlet diameter « = = = = = = = = = = = = 348 in,
Tube outlet diameter = = = = = =« = = = = = = - «313 in,
Shell diameter = = = =« = = = = = = = = = - = «3,65 in.
Tube and shell welght « = = « = « c o c c e = = 25 1b
Hg inventory = = = o« c @ e v c e v v 0o 0 = = = = S 1b
NeK inventory = « = = « o v «c o c o =« = = = = = 21.5 1b

Tube and ¥in Radiator

Total tube and fin length = = = = = = = = « = = 815.9 ft
Number of tubes = = = « = = - = c 0 = = = = = o 38

Armor Thickness = = = « = =« = = = = = = o = = = 0520 in.
Tube inside diameter - = = = = = = = =« =« = = < .200 in,
Inlet manifold ID = = = = = = = = = = =« = = = = 1.14 in,
Outlet manifold = = = = = = = = =« =« = = = =« = = .816 in.
Manifold length = = = = = = = = = o = = = = = = 15.8 ft
Fin half width = = = = c = ¢ ¢ 0 0 0 e o = = = = 4,55 in.
Fin thickness at root = = = = = = = = = = =« = - -064 in,
Fin thickness at tip = « = = - = - - - - - === .016 in,
Weight of radiator including manifold = « = = - = 1030 1b

REFERENCES

D. B. Mackay, C. P, Bacha, Space Radiation Design and
Analysis Part I, ASD Technical Report 61-30 dated October
1961.

Comparison of NaK and Organics as SNAP-8 Fluids, AGC
Report 2413,
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APPENDIX B

INTRODUCTION

This report presents the method of analysis used to determine the optimu:
weight of a compact mercury condenser for the SNAP-3 system, This method of
analysis was used to produce curves such as the one shown in Figure 1. The
detailed calcuiations, results and conclusions of the analysis are not a part

of this report.

DISCUSSION

The condenser analyzed was a compact counterflow type. The coolant passages
have a constant height and width along the condenser. The mercury passages have
a constiant height but the width is gradually reduced toward the exit, resulting in
o4 tapered passage. The mercury condensing film coefficient considered in the
analysis was 8o high compared to the coolant coefficient that fins were not used
on the mercury passages, The core geometry and condenser configuration are shown
on Figure 2, The following given data was kept constu.nt for .55;:2. casea’inalyzed:

a. Condenser heat load

b. Coolant flow rate

c. Coolant exit temperature

d. Mercury inlet and exit temperature

e, Mercury inlet quality

f. Allowable mercury pressure drop

g. No subcooling of the condensate

h. Coolant - 0S-124
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In general, the optimization procedure consisted o. the following steps:

a.

b.

Based on the given data determine the required heat transfer overall

condr-tance (UA).

Assume 3 different Reynolds numbers for the coolant. For each one

determine:

1.

2.
3‘
h.

5.

Coolant flow area. The mercury inlet flow area was taken as
equal to the coolant flow area. For a counterflow type heat
exchanger the two added together define the condenser frontal
area., At the mercury exit the area was fixed by the tapering
of the mercury passage. The coolant flow area was constant,
From these the exit total area was calculated.

Overall unit conductance (U),

Heat transfer area,

Condenser dimensions.

Weight of the condenser, coolant and mercury inventory and
manifolds. Let these added together be equal to 2> W,
Pressure drop of coolant through the condenser and the
associated pumping power,

Weight penalty due to pumping power. (W APP)’
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Plot SW and W versus coolant Reynolds number. A typical plot is

APP

shown in Figure 1. By adding 2 W and W at various Reynolds numbers

APP
the curve of total weight penalty (wT) is obtained, As can be seen in
the figure, this curve has a minimum value, which represents the condenser
of minimum weight. It also has a corresponding coolant optimum Reynolds
number. The size of the optimum condenser can be determined by repeating
the calculation using the optimum Reynolds number or by interpolating the
results already obtained,

The detailed description of the method of analysis is divided in two
parts, (A and B). Part A covers the complete analysis as described above,

Part B is an extrapolation of the results obtained in Part A to correct for

a higher condensing temperature and heat load.
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SYMBOLS AND NOMENCLATURE

Symbols Description Units
Miockage  Condener frontal area blocked by o
Afrontal Condenser frontal areas IN2
} (Af) Coolant flow area N?
" (Af)c Mercury flow area at mercury inlet e
Hg
} (AHT) Heat transfer area based on coolant side FT°
¢
b Plate spacing in coolant passages IN
b' Plate spacing in mercury passage at
! mercury inlet IN
: Cy Group of parameters IN2
: 02 Proportionality constant -
(cp)c Specific heat of coolant BTU/Lb="F
} (Cp)Hg Specific heat of mercury BTU/Lb="F
‘ C, Total heat capacity of coolant BTU/Hr="F
Chg Total heat capacity of mercury BTU/Hr-"F
Coin Value of lower heat capacity BTU/Hr<"F
; Crax Vaine of higher heat capacity BTU/Hr-"F
i D Dimension in coolant manifold IN
lr Dy Hydraulic diameter FT
E; f Coolant friction factor Dimensionless
|: hc Coolant heat transfer film coefficient BTU/Hr-oF‘-F'I‘2
; K Thermal conductivity of coolant BTU/Hr="F-FT
Kqq Thermal conductivity of stainless steel BTU/Hr~"F~FT

- -
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Symbols

o3

Hg

Description
Length of fins

Fin parameter
Total number of mercury and coolani passages

Total number of vertical divider plates
between passages

Fin effsctiveness, coolant side
Fin effectiveness, mercury side
Surface effectiveness, coolant side
Surface effectiveness, marcury side

Number of transfer units

Prandtl Number, coolant
Reynolds Number, coolant

Coolant pressure drop

Condenser heat load

Increment in condenser heat load
Dimension in mercury manifold
Dimension in mercury manifold

Coolant inlet temperature
Coolant exit temperature
Mercury inlet temperature
Mercury exit temperature

Log mean temperature differsnce

Plate spacing in mercury passages at
mercury exit

Units
FT
Pt

Dimensionless
Dimensionless
Dimensionless
PSI

BTU/HR

BTU/HR

IN
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Description
Overall unit conductance
Overall conductance

Coolant volume

Coolant flow rate

Mercury flevr rate

Weight of mercury in mercury exit manifold

Weight of mercury in coolant inlet manifold

Weight of coolant in condenser

Weight of coolant in two coolant manifolds
Total weight of coolant manifolds

Total weight of mercury manifolds

Condenssr weight (empty)

Weight of condenser pelates

Weight of condenser fins

Weight penalty due t9 pumping power
Total weight penalty

Mercury inlet quality

Width of condenser at mercury inlet
Width of condenser at mercury exit
Height of condenser

Length of condunser

Increment in condenser length

Units

BTU/HR=CF-FT°
BTU/HR-CF

Fr°
LB/HR

LB/HR
LBS

LBS
LBS
LBS
LBS
LBS
LBS
LBS
LBs

LBS

LBS

IN

IN
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Greek
Symbols Description Units
o hingle in mercury manifold Degrees
% Condenser heat transfer area FT2
Conderiser volume betwzen the plates HE
g Fin thickness IN
0 Total fin area -
Total heat transfer area
(,'J Group of parameters -
e Coolant dynamic viscosity LB/FT-HR
P . Density of coolant LB/FT3
..\
P a8 Density of stainless steel I.B/F'l‘3
\6 Heat exchanger effectiveness -

- Page 7
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METHOD OF ANALYSIS

PART A
1, Given Da’. :

Qc = condenser heat load
We = goolant flow rate

Wﬁg = mercury flow rate

X = mercury inlet quality
T = me~sury inlet temperature
Hgl

T = mercury temperature at end of condensing process

ng
Tc = coolant exit temperature

2
2, Thermo Cycle ~ Assume a counterflow heat exchanger

Thg,

7rerry9.

- - I Z<=‘)’) 7% z
/rercur/v /n/gf L /"/Prcar/ Exsf 7 ( )
| Coolan?t ex/T Coolant JInlet

For the cases analyzed THgl - Tng - 20%F

Tags 8
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3.

L,

Coolant Inlet Temperature (T )

1
Q

T o7 - cond
(4] C
2 1 cpc ﬁc

Q
cond

COn!pute T = T - e ncmmme———
9@ %% ¢ %

P, ©

Cp must be at average of Tc an’ T°1 and will require some trial
c 2

and error calculations to use the proper value,

Heat Exchanger Effectiveness (&)

Let G, =W, C
Hg = 'H
e He py.

For a condensing process Cp =0 , However, there is a drop in
Hg

temperature from THg to THg due to the mercury pressure drop and
1 2

'
we will define a fictitious C Hg as follows:

Cp. (T, =T, )wC (T =T )

Hg Hgl ng c ¢, ¢y
o . Tmg " THg, . _20°F
¢ Hg Te, = e 2 ) sl

2 1

Ce Crin
—T1— 18 tl.e equivalent of - used by Compact Heat Exchangers
c max

Hg

Book, Reference (1).
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Read NTU (Number of Transfer “nits) from Figure 2 of

Reference (1) as a function of € and Cmin
—

max

S, Overall Heat Transfer Conductance (UAreq)

> 0.
Compute UAreq (NTU) (W, cpc) BTU/HR="F

6, Heat Exchanger Core

Assume plain plate surface type 11.1 for coolant core (no fins on
mercury side). The following data for that type of surface obtained

from Reference (1).

DH : Hydraulic diameter 01012 FT

é; + Fin thickness .006 IN,
Heat Transfer Area 2

g? Volume Between Plates 367 EI}

FT

A Fin Area

Y : Total Area . 756

b Plate Spacing .25 IN,
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Te

9e

It is also assumed that the plates are made of stainless steel 316
and are ,035 in, thick,

Coolant Propertles

Get the following properties at the average of T°1 and Tc
2

C
Pe
K
(]
c
NPR - uc Pc:
¢ K

Coolant Flew Area Required (Af)
c

Assume a Reynolds number for the coolant ( NRE)

- Fr

Dy W

Compute (Af) - W
] c

Coolant Film Coefficient (h_ )

For Np, assumed get Y/ from Figure 63 of Reference (1).

where ¥ = [n (a,) 2/3
c ' f e N
Wc (Cp)c
c
Compute h_ = (IJ wc P _ BW
2/3 HR-CF-FT

(Nog)  (A,)
PR \fc

Pege 11




10, Fin Effectiveness - Coolant Sidd (Nf)
. e

. 2 ho -1
Compute Ic = R:-g = (FT)

: ( S is defined in Section 6)

b
Compute & = TI2)(2) = FT

(b is defined in Section 6)

| Compute %L
~st Tan h (ncl)

e mKk

l

t Compute (N,) = T2 P (n L)
’ c

f

11, Fin Effectiveness - Mercury Side (Nf)
Hg

A condensing film coefficient of 10,000 B'I‘U/I'IR-"F-I""I’2 was assumed

on the mercury side, as suggested by Reference (2). This will make

(Nf) 80 low that it can be neglected, In other words, the thermal
Hg

’ resistance dus to the mercury film will be neglected.

12, Surface Effectivensss - Coolant Side (No)
(N) =1- ¢[ 1.-(Nt)]
c ¢

vhere # 1: defined in Section 6

T T T T
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13, Overall Unit Conductance (Uo)
(Based on coolant side)

(Tfrom Reference (1))

1 1, 1
T W R Ty, Ty
(AHT)c

Neglecting the right term because of the high value of hHS we get:

U = (N) h = BTU/HR-CF-FT°
[+] Oc (4]

1, Heat Transfer Area Required (AHT
(Based on coolant side)

UAreq (from Section S) -
(Ayp) = U7 (Irom section 13) = FT°
¢ c

15, Cootant Volume (Vc)

- (A.,) (from Section 1l)
Compute Vc AHT o - FT3

% (from Section 6)

16. Length of Condenser 2
Vc (from Section 15)
(A

Compute Z = - FT

f)c (from Section 8)

17. Condenser Dimensions on Mercury Inlet

Let (Af) = Coolant flow area; same at inercury inlast and mercury
c
exit (in%)

Let (Af) = Mercury flow area at inlet (in2)
Hg
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Ist W

Let. b

Let bt
Let x =

lety =

Total number of coolant and mercury passages
Coclant gap (in)

Mercury gap (in)

Width of condenser at mercury inlet (in)

Height of condenser at mercury inlet (in)

Based on experimental data on condensing mercury pressure drop

presente

d in Reference (2), a proportion was established between

the condenser of Reference (2) and the condenser being analyzed,

In ordsr to maintain a pressurs drop of 4 psi on the mercury, ilie

propertion resulted in the following expression for the mercury

passage

gap on the mercury inlet (bt).
1/3

bt = 2,29 [ Z (1)

(bt

L(Y N)
= jnches, Z = FT, y = inches)

Xo

P.S

// ‘} Lef‘X:j
X > X,

Pla~e Faxness= . 035 on.

¢
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From the above figure we have:

N
() =yd 3 (2)
c
yne 20
b
Substituting this value of(y N)in Equation (1), we get:
1/3
7 b2
bt = 2,29 ) 2 = inches
I (Af) ‘

¢

The mercury flow area is given byr

(3)

~l=
)
rlo
]
=

(A,) =Dty
' ve

Substituting(y “) from Equation (2) into (3), we get:

- b [ 2(ay)
(Af)H’ 3 £
b ]
Let x = y
A:E‘rcmtal = (Af)c * (Af)}{g * “'blockage

= (ap) + (rp)  + .035(Nl)y
. c Hg
Where N + 1 = total number of plates
Aprontal ™ (Af)c + \Af)Hg + .035y *+ 035Ny

c

yb

Substicute N -E(Af) J rrom Equation {2)
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. 2(A£)
(X Afrontal = (Af)c + (Af)Hg + OOBSY + 0035 yb c y
() + () <07(A,) 035
= (A + (A 4. + .
¢ . P e c y
- cl + ,03%y (L)
(hy +ay » T
Wher = (A + (A + c
e C £ g B~
Mso Ky 0oy "XV = y2 (by letting x = y) . (5)

Setting (L) = (%) m’-ge:tz"
¥ - ¢, + .035y

yz-.OBSy-Cl-O

y=3% [.035 + \/'(.035)2 - b (0;) :l

-3} [:.035+ V' .001225#1&(:‘1 ]

Since x = y, we also have solved for value of x
The number of passes (N) is obtained from Equation (2) as follows:

N -{E(Af)
(]
e

18, Condenser Dimensicns on Mercury Exit Side

The condenser height (y) is the same at the mercury inlet and exit .
Let x °o ™ condenser width at mercury exit (inches)
Let t, = gap between mercury plates at exit

Let N = N (same as in the mercury inlet)= total number of mercury and

coolant passages

Page 16




Using the same approach described und . Section 17 based on

mercury pressure drop data from Reference (2), we get for tyt

t = .59 L v
(y N)

(z = FT, y = inches, t, = inches)
We can then compute xo as follows:

Nb N

X, = > *+ 3%+ (N +1)(.035)
19, Coolant Pressure Drop (Apc)
Disregarding the inlet and exit pressure loss: -
|
/\P, = 1.08 x 107 (f> (AHT)O :
. W J
c

zf&P = psi
c
Q . = coolant average density, LB/FT3

ﬁé = coolant flow rate, LB/HR

2
(Af)c = coolant area, FT

- 2
(AHT)c coolanuv n.. transfer area, FT

f = friction factor, function of NRE’ obtained from

Figure 63 of Reference (1) for plain fin surface 11,1

o, .
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20, Weight Penalty Due to Pumping Power (W, pp)

W APP " [Apc wc x Ihh-l l: (Penalty Factor)J

Qe

Where Penalty Factor = —_L-—H
1.328 x 10
W APP = Lbs
APc = psi
v’:c = Lb/Hr

Pe - Lb/FT>

21, Weight of Condenser ( wcon d )

wcond - Wpla‘l'.es * wf:'m (Lbs)

W rates = (N + 1 2)(:22)(P_)

¥y 2 = £t

st = 500 Lb/F‘r3 (steinless steel)

e wPlates = L.b6 (N + 1)(y 2)

s 23 | [0, (4] Lo

For surface 11,1 :

A
-({—Hi-'T‘T - ,756

c

§ = .006 in
g (g = 500 Ib/FT°
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fins " +189 (“HT)C
22, Weight of Coolant

M=% Qe

Ir e(_ is taken as 61 I.b/l“T3

W, = 61V,

(vc from Section 15)

23, Weight of Mercury

The weight of mercury between the inlet and the vapor-kiquid

interface was assumed to be negligible,

2hie Weight of Mercury Manifeld ( mmmf)

Hg
Assume a pyromidal shape with an angle X = 7° (inlet and outlet equal)

% X‘-g
*

r-ZTan'? Tﬁ%ﬁ)’

_L_ -
2 stn 7°

Surface Area = % (Perimeter of base) (S)
=% (2x+2y) (s)
=3 (Ly) (5) =2y (fp)

= 8,2 y° = in°
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Weight of 2 manifolds = (Surface Area)(Plate thickness)( eu)(?)

- 8.2y° (.035)(3gp) (2)
- .16k y° = Lbs

- (W )
manif Kg

(y = 4in)

25, Weight of Liqu 4 A reury in Mercury Exit Manifold (W gl)

rey 1
(refer to sketch in Section 2L)

Wy ™ (Te))(Py,) =173 (il ()

Ixpoessng x and ¥ in terms ~f y and subs*ituting the mercury

density:

Wy, = H6 )} (5 = inche<)
5

20% of the weight computed from ¥. 3 avcve 2quation vas used as a

realistic mercury inventow-, It is expacted that a inanifold of the
requisite interngl wvolun: can “e produced,

26, Coclant :.anifold

MERCUR Y
—
cvT

—
/ \ CoccanTt a0
Coocan
g \
1
|
|
|
\ ]
)
) 2 ,
IMERCURY | cooccanr C ondENSER
{ M AN FOLD MANIF o LD

Cooecav?
MANIFOLD
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Let area of top half cylinder be equal to coolant flow area (Af)’

Let @ = 139§ Lbs/in’ Plate thickness = .035 in.
a) Area of half cylinder = (Af) - B’: D"il [Q]

c
Compute D = 1,6 \/(Af)
c

D = in, (Af) = in
c

b) W of half cylinder = y (-7%)-) (.035) (-]%g%)
= (016 yD (Avs) (y in inches)

¢) W of plates = (N + 1)(y)(D)(-035)(%)
= (N + 1)(yD)(.0105)

d) W of end plate = x_2z (.035)(%%)

2

- 0053 y° (x = y)
e) W of top and bottom = (y D + y g)(-035)(f?%%)
= 008 yD

. (! \
f) The total weight for 2 manifolds will be \W if)

=2 [.016 y D + ,0105(N+1)(yD) + ,0053 y 2, 008 y D]
=2y [.ozun +,0305(N+1) + .0053y]

g) Weight of coolant in 2 manifolds:
T
W -2!:xyDQc:H:%;
®nanif 4
=.035y°%D

61 :
(Assuming x=y, Qc = 1758 Lb/in",

Page 21
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50% of the weight computed from the above equation was used
as a realistic mercury inventory. It is eﬁpebted that a

manifold of the requisite internal volume can be produced,

h) Weight of liquid mercury in covlant manifold at mercury exit

end (ng)2

2
=aX¥D - YD (8Lo
g, Cg = Tr2oimsd)

2

- 2Ll y2 D (y in inches)
, (D in inches)
14% of the weight computed from the above equation was used

&8s a realistic mercury inventory. It is exvected that a

manifold of the requisite -internal volume can be produced,
i) Total weight of coolant manifold

1
(W ) =W + W + W
manif c manif Cnanif Hg2

27. To*al Weight of Mercury and Coolant Manifolds

) +W

) + (W
Hg Hg

=W m&nd £

W manif
[J

manif 1

Three cases were solved and a curve of W ThL (Ai.)‘= was

plotted to eliminate calculations.

PART B
Extrapolation to a Higher Condensing Temperature and Higher Load

28. Thermo Cycle
The coolant outlet and mercury inlet and outlet temperatures will be

increased 20°F, The "old" heat load will be increased by an amount

A Q. Such a thermo cycle can be represented 2as followss
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&, { ‘ Mereo,
S a —n,
Given: ‘ “lan a7,
Tlij,‘ Tﬂﬁ‘ +20°F \ AQ AT3
Thg, = Tag, +20°F 7, CASE
Tc‘1 = T, +20%F . \ s B
T~ Tz20" & :j'\% e
Ty, ~Tog, = 20° f°'d T Tro,
- .
CASE
Temp. %, A
< 2 ez

] —t
Condenser CLe g 75

Refer to figure above,

Qol<:l " UA'.L ATlog old u (‘Ci 2) A T1c>g old

AT Uy A\Tlog new = U (Cz 2) AT1c>g new
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Whers c2 is a provortionality constant, If we divide one

equation by the other we gets
%ua . % AT 014
A : A log new

. Az =12 AT 014
) [ old T }

AMlog new

/A Z = increase in condenser length to handle additional load,

Based on the "old" x, y, and U derived in Part A we can éstablish
the following proportiocns:

y4
wco'.md new (Wcond old) ( Do )

4 old
whe.® 2 =2, * Az

fe0 (Z
Wcc)ol new = = ool c-ld) \.Zﬂ)
old

- Z
WAPP new = ("APP o1d) (Z—“!-“)
old
wmanif. new -wmanif. old

(See Section 29 on how to campute A Tlog g AT , ete,)

og 1uew

29, Coolant Temperatures

Given Q ,4 = 1.082 x 1o6 BTU/Hr

Given Q .. = 1.,1L7 x 106 BTU/Hr

given T, = 630°F

Hgl
(")
Given Ty g, 660°F
Tc = variable input data
2
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-

- .-

D 4

AQ=q,, = Q4 " 65,000 BTU/Hr

' o,
Compute T =T  + 20% = 700°F

Hyy ‘Hg
(prime refers to new; no prime means cld)

' )
Compute T Fe, - '1'ng + 20°F = 680°F
Compute T' =T + 2°°F
e e
2 2
' 1 Q
Compute T -7 =  “old
[ 2 °1 et ————
W C. ave
¢ Pc

Page 2%




P

L

1 1
Compute ATB'THS -T

2 %

Compute ATlog new - ATB - ATZ

24

Compute Az = 2z, [%;Ld Q_:lg_o_ng

[Slng new
Compute 7, gw * Zaa * Az
Compute weoncl new

"

oW previous sectiom

)
)
w'cool new ;
)
APP new )

From relations derived on
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APPENDIX C

OPTIMIZATION OF NaK TUBE AND SHELL CONDENSER

l, The purpose of the SNAP-8 Condenser Optimization Study is to select the
length, average diameter, and number of condenser tubes so as to minimize the
total weight of the condenser, The total weight includes the weights of tubes,
shell, merwsry, .. . ..t, and pump, The configuration examined is a counter-
flow tube-in-shell condenser, Goolant is a eutectic mixture of Nak., Initial

conditions are as follows:

Mercury flow rate 9100 1b/hr
Condensing temperature 680°F
Subcooling temperature 520°F

2. A total of 36 cases were computed, The variable parameters and their
values are listed below:
Coolant heat transfer coefficient 625, 1250, 2500 Btu/ftzhroF

Coolant flow rate 27K, 32K, 37K 1b/hr
Coolant outlet temperature 600, 620, 6L0, 660°F

3. The following paragraphs present a brief explanation of the methods and
formulas employed in the study.

a, First, the product of tube length, average diameter, and number of
tubes is computed from a consideration of the overall heat transfer coef-

ficient in the condensing region,

. _m 1, 1 1
L)) = —; [hﬂg "X+ 8/ B L+ W]

where; UA = Qcond /A‘Tlog
Qcond N ng Hu
Tlog * (Tgy - T / In l-_ cond™ Tc) / (Tcond RI)]

c RT ~ %ond / Wc Cc
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The following assumptions are made:
hy, = 1250 Btu/ft2hr°F (Ref. a)
k=10 Btu/ft hr °F

0 /D = 0,10
H, = 125,7 Btu/lb
C, =0.21k Btu/1b°F

b, Second, the product of the average tube diameter and number of tubes
is computed from a consideration of the pressure drop in the condensing region.
Reference (a) presents a curve of the ratio of actual prassure drop in the
condensing region to pressure drop if vapor only were present versus the

parameter UHz.1.25
(R g)in { 0 /
The following point is chosen for the amalysis: ¢ = 1.8 at

2Hg \1.25 _
(Rey)sp (=) = 10,000.

ND, = Loy . /‘n',«-Hg (ReHg)in

in H

wnere: D, =D/0.95 (assumed)

A4 = 0,148 1b/ft hr

Hg
,
_ VHg 11,25
(Rey,); , = 10,000 (—8-)
- ey
'vﬁg = 3,85 £17/1b

c. Third, the parameter D5N2/L =D (ND)3 / (IND) is computed from the

same pressure drop criterion. The single-phase vapor pressure drop is given by:
. 2,
£ (1/D) P yg(Vy,/2€)

£ (/D (Fy/28) (b Wy, N D3Py )

APV

Rearranging, this becomes:

D° N/L = 8f ngQ/'Irzngg Ar,
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where: f = 0,0225 (Ref, b)

3
Prg = 0.26 W/t
AP, =APy /g

OP tp = L psi  (assumed)

d. Fourth; from the three independent reiations between tube length,
average dlameter, and number of tubes, unique values for these quantities may
be computed. The computed length for the condensing section is then increased
by the ratio of subcooling heat load to condensing heat load.,

L = L1+ Qqub / Qcond)

where: qub = ng cHg (Tcond - Tsub)
c 0,0325 Btu/1b°F

Hg
e. Fifth, the weight of the tubes is computed,

W, = 'lTLtNDS,o15

where: &= 0,20 in, 3
/t = 0.28 1b/in,

f, Sixth, the weight of the shell is computed assuming a hexagonal
packing of the tutes with an average spacing of 0.050 in., between tubes. It is
further scenmed that: the manifolds attached to the shell weigh the same as

five disks the size of the cross-section osf the shell.

Woawpwp + 5 p oy
8 s PS 11 s PS
where: t = 0,063 in,
/OS = 0,280 lb/in@3
g. Seventh, the weight of the liquid mercury in the subcooling portion

is computed.
e G-
ng ol e D(L - L)/’HgL N
where: Py ;= 800 1o/f¢

c-3




B h, Eighth, the weight of the coolant is computed.

T2 2, !
wc_T(Ds -ND)LPc
where: /oc = 50,9 lb/f‘t.3

i. Ninth, the equivalent weight of the pumping power is computed making
use of the Nusselt-Reynolds-Prandtl number correlation given in Reference (c):

W= 612 [ (a2 /a2 Prre | 3/5

wp = 0,271 ('. )
W APc//oc

where: AP_ = £ vc2 L' p_/2g Dy
f = (Re) (Ref. b)
¢ Re/‘e/DH Pe

<3
n

} Re = (Nu/é‘l.z)s/3 A-H2 /Af2 Pr

Nu = h, DH/kc
%‘h,}’r_(Dsz-NDz)/'"'(Ds*ND)
Ag = WL ND

. T 2 2
e
The following assumptions are mades
k, = 1b.7h Bt/ft hr Op

Pr = 0.,00972
A, = 0,670 1b/ft hr

Jo Finally, the total weight is computed by summing the five comnmonent
weights computed above,

[ ]
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Nomenclatures
A £ Coolant flow area
AH Heat transfer area
c Specific heat
D Diameter
DH Hydraulic diamever
f Fanning friction factor
g Conversion factor (32.2 ib/slug)
h Heat transfer coefiicient
HV Heat of vaporization
k Thermal conductivity
L Condensing length
L‘ Total length
N Number of tubes
Nu Nusselt number
Pr Prandtl number
Q Heat transfer rate
Re Reynolds number
t Shell thickness
T Temperature
UA Overall heat transfer coefficient
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