General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

TECHMCNL MEMORRMDUM
prepared by: E. F. Perez, F. R. Cleveland, L. Rico 9

ABSTRACT
\Rightarrow SNAP-8 THIRD LOOP OPTIMIZATION

This report presents a summary of the investigations conducted to define optimum operating parameters for the SNAP-8 Third Loop. Eutectic NaK and OS-124 were considered as coolant fluids for this loop. A comparison is made between the fluids on the basis of optimum equivalent weights. Also included are analyses developed for optimizing design parameters for the heat exchanger, condenser and the flat tube and fin radiator.

LIBRARY COPY

APR 141967
LEWIS LIBRARY, NASA
CLEVELAND. OHIO
APPROVED:

NOTE: This document is considered preliminary and is subject to revision as analysis progresses and additional data are acquired. The general reader may encounter internal reference not available to him.

SNAP-8 THIRD LOOP OPTIMIZATION

I. INTRODUCTION

This analysis was conducted to determine optimum third loop parameters and to make weight comparisons for systems using OS-124 and eutectic NaK as third loop fluids. The result of this analysis was a consideration in selecting NaK as the third loop fluid. The analysis was performed on a reference system which included a mercury-to-coolant fluid heat exchanger condenser and a flat tube-and-fin space radiator.

From a preliminary cycle analysis it was determined that an optimum weight system could be obtained by having the mercury condensing temperature at a lower level than would be practical from mercury pump NPSH requirements. Therefore, condensing temperature and mercury subcooling were selected to satisfy the mercury pump requirements and were held constant throughout these investigations.

II. DISCUSSION

A. THIRD LOOP ANALYSIS

The third loop analysis was a parametric study in which operating parameters and component design parameter were optimized in order to determine an optimum weight system for each of the fluids. The analysis was made by varying the coolant flow rate and the radiator inlet temperature for a specified total heat rejection load of 330 kw . The condenser and radiator were optimized for each design point. In addition, pumping power equivalent weights were evaluated and included in assessing component and system weights. The power equivalent weight was based on an estimate of 200 lb of system weight per kilowatt of electrical power.

Certain criteria were used in making this analysis. These criteria are reviewed in the following discussion in order to qualify the analytical results.
B. RADIATOR ANALYSIS

The radiator was considered to be a flat tube-and-fin configuration for both 0S-124 and NaK. Because the radiator comprises a high percentage of the
overall system weight, a method was developed for optimizing radiator parameters in order to have a minimi weight radiator for a given set of operating conditions. The radiator optimization analysis is included in Appendix A of this report. The actual radiator weight calculations were made with an approximate analysis which differed slightly from that described in Appendix A. An error analysis was made to determine the difference in results which could be expected if the more exact analysis were used. The results showed that the maximuid diference in radiator weight could be approximately 2.6% and that the maximum difference in projected area would be approximately 5.5\%. These differences, however, do not have a significant effect when making a relative comparison between two fluids since the same analysis is used for both fluids.

Some of the significant radiator criteria which were applied in this analysis are as follows:

1. Heat rejection load was 330 kw thermal
2. Optimum weight tapered fins were designed using the data of D. B. Mackay and C. P. Bacha (Reference 1)
3. Incident heat flux from solar and planetary sources were evaluated on the basis of a 500 mile earth orbit
4. Emissivity and absorbtivity of .85 and . 60 , respectively, were used
5. Armor thickness for micrometeorite protection was evaluated from a preliminary analysis using the Bjork penetration model and micrometeorite data from Whipple. An armor thickness of . 320 in. was calculated. This armor thickness was kept constant throughout these analyses
6. Radiator parameters were optimized in each case including tube diameters and manifold diameters, lengths of tubes and manifolds, number of tubes and fin dimensions.
C. CONDENSER ANALYSIS
7. OS-124 Compact Fin and Plate Condenser

In the case of the organic OS-124 coolant, the coolant film coefficient is the controlling resistance to heat transfer. Because of the low organic film coefficients it was decided to consider the use of a compact fin and plate type heat exchanger in order to obtain as large a heat transfer area as possible. Subsequently, an analysis was made on a concentric tube heat
exchanger for one design point and the results of this analysis showed that comparable equivalent weights could be obtained with a heat exchanger of this type. An analysis of the compact plate and $f \pm n$ type heat exchanger is covered in Appendix B. The condensers were optimized for each design point. A typical condenser optimization is shown in Figure 1 which saows the component weight and pumping power equivalent weight as a function of coolant Reynolds number.

In evaluating $N a K$ as a third loop coolaut fluid, a tube and shell type heat exchanger condenser was considered. The analysis used for evaluating the NaK condensers is described in Appendix C. The NaK condenser was also optimized for each design point. Figure 2 shows a typical optimization of the condenser as a function of NaK film coefficient and flow rate.

III. RESULTS OF THIRD LOOP OPTIMIZATION ANALYSIS

In evaluating optimum operating and component design parameters a number of cases were computed. These cases consisted of a series of design points in which the third loop flow rate and the radiator inlet temperature were varied. First in order to determine the near optimum tube diameter for the radiator tubes, some preliminary cases were computed in which the tube diameter was varied. The results of these cases is shown on Figures 3 and 4 for OS-124 and NaK respectively. The optimum diameters were used in subsequent cases in which the flow rate and radiator inlet temperature were varied.

The results of the $O S-124$ and $N a K$ optimization are summarized in Figures 4 and 5 respectively. These figures show the variation of equivalent weight (including weight of radiator, condenser, subcooler, and equivalent weight of pumping power) as a function of radiator inlet temperature and coolant flow rate. It was concluded from this analysis that the third loop fluid could not be selected on the basis of system weight since the system equivalent weights are comparable. NaK was finally selected as the working fluid on the basis of other considerations such as degradation of heat transfer properties and possible decompositions of OS-124. These considerations are discussed in Reference 2.

A summary of the optimus NaK condenser and radiator data is as follows:

Fin and Tube Condenser

Tube length ft
Number of tubes 78
Tube inlet diameter 348 in.
Tube outlet diameter 313 in.
Shell diameter 3.65 in.
Tube and shell weight 25 1b
Hg inventory 5 1b
NaK inventory 1b
Tube and Iin Radiator
Total tube and fin length 815.9 ft
Number of tubes 38
Armor Thickness 320 in.
Tube inside diameter 200 in.
Inlet manifold ID in.
Outlet manifold 816 in.
Manifold length ft
Fin half width in.
Fin thickness at root 064 in.
Fin thickness at tip 016 in.
Weight of radiator including manifold -1030 1b
REFERENCES

D. B. Mackay, C. P. Bacha, Space Radiation Design and Analysis Part I, ASD Technical Report 61-30 dated October 1961.

2 Comparison of NaK and Organics as SNAF-8 Fluids, AGC Report 2413.

				COM	Rat	- 0°	No	NSEF							
					Pril	Mz	Antio	N							
				cod	CHe	dint	- 0	5.124			+				
边	-			H_{4}	Fio	awhat	4-9	100	8/4R						
-		+			-	,					-	,			
54.4					-	+	-	,							
-			,		*	+ 4	-								
			,				!								
							-								
T	\square	,		(+									
W ${ }^{\text {Pre }}$	+														
- 4								+							
4 ${ }^{4}$	-	+	-							\triangle					
M 4	,	+					7			\square					
- \square^{4}	4	\square								4			.		
-1															
- 4	,														
$\square 120$,									
4															
3															
9.															
- 0															
-4															
		1		T	-										
		100	00	200	00	30	000	400					60		
				OOLA	NT	Reyn	nold	Qs N							

					Satre			Fpre	cexan	Mase									
						ant	-												
							7 F	equre	ent	+	rspa	-	-						
\%										.	+								
5							.	\cdots			.	.	,						
						.					-								
													.						
4											:	,							
											1								
\%									\checkmark	.	\cdots								
fel									\cdots	\cdots	I								
\$.																			
			\cdots		${ }^{\text {coi }}$														

\qquad or. 2 Paces
oUnict RAQUATOR QPTIMIZATIAN or D. LT AKR
\qquad
WORK ORDER. \qquad
APPENDIX A
DETERMINATION OF METHOD FOR WEIGHT OPTIMIZATION OF RADIATOR PARAMETERS

THE SUET OF THIS aNALYSIS IS TO PROVIDE A METHOD FOR SELECTING RADIATOR PARAMETERS WHICH WILL RESULT IN A MINIMUM WEIGHT FOR A SPECIFIED HEAT REJECTION RATE AND TENPERATME LEVEL.

THE FIRST PART OF THIS ANALYSIS IS CONCERNED WITH THE DESIGN OF FINS AND ARMORED TUBES. THE SECOND PART OF THE ANALYSIS IS CONCERNED WITH THE DETERMINATION OF THE NUMBER OF TUBES AND SELECTION DR MANIFOLD PARAMETERS FOR MINIMUM WEIGHT.

APPLICATION OF THIS ANALYSIS WILL RESULT IN AN IDEAL RADIATOR IONFIGURATION. IT IS RECOGNIZED THAT FROM PRACTICAL CONSIDERATIONS, SUCH AS STRESS, AND PAHSICAC ARRANGEMENTS, THE DEAL PARAMETERS WILL HAVE TO BE WOOFED TO SOME EXTENT. HOWEVER; THE IDEAL OPTIMUM CONFIGURATION CAN BE USED AS A REFERENCE FOR,

1) EVALVATION OF DTHER MORE PRATICAL RADIAOK CONFIGURATIONS, ANU Fl EVALUATING OPTIMUM TREATING PARAMETER FOR THE SNARK E GS.

THE VAT: OF MACKAY AND BALA REF., ARE USE FUR EVALUATING HEAT REJECTION FROM THE FINS.

DEF. \quad DB MACKAY, CD. BACH, "SPACE
RADIATOR DESIGN \& ANALYSIS PART I
ASO TECHNICAL REPRO 6I-30
OCT. 1961
\qquad or \qquad Dar \qquad WONK ORDER \qquad
NOMENCLATURE AND SYMBOLS
A RADIATOR PROJECTED AREA
Ax FLOW CROSS SECTIOWAC AREA AT x ON MANIFOLD
At TUBE FLOW cross sectional area
A_{1}, A_{2}, A_{3} ETC SHORT HAND NOTATIONS IN WEIGHT EquATIONS
a, b, c, e SIIOMT HANO MOTATIONS DEFINED in P. 5
c, CONSTANT USED IN REF, $=\sigma\left(\epsilon_{a}+\epsilon_{b}\right)$ WHERE $\epsilon_{a} \& \epsilon_{6}$ ARE THE EMMISIVITES ON LITHE SIDE OF THE RADIATOR
C_{2} CONSTANT USED IN REF. I WITICN IS EQUIVALENT TO THE ABSORBED EXTERNAL HEAT FLUX

Dm inlet tube diameter at inlet manifold
Do DIAMETER AT OUTER SURFACE OF TUBE ARMOR
DI TUBE INSIDE DIAMETER
Ep ENVIRONMENTAL PARHAIEIEN IN REF / $=\frac{C_{2}}{C_{1} T_{4}^{4}}$ f TUBE FILCTION FACTOR

Kail THCRMAL CONDUCTIVITY OF ALUMINUM
KM CONSTIIUT RELATING HYDRAULIC PUMPING POWER TO SYSTEM EQUIVALENT WEIGHT DATE \qquad
gunact \qquad or \qquad wonk order \qquad
$K_{1}, K_{2} \cdots \cdot .$. SHORT HARD NOTATIONS IN WEIGHT Equations
L_{h} FIN HALF WIDTH
LW LENGYH OF TUBE AND FIN
Lm LENGTH OF MANIFOLD
\angle SYMBOL DENOTING LENGTH
N, NUMBER OF TUBES IN ONE HALT OF ON PANEL
NT TOTAL NUMBER OF TUBES IN RADIATIoN
q TOTAL HEAT REJECTED BY TUBES \notin FINS
GI HEAT RGECTED FROM FINS
IT HEAT REJECTED FRO TUBE

PPM HYDRAULIC ROWER FOR CIRCULATION THROUGH THE MANIFACUS

P PT hYDRAULIC POUKR FOR cIrLULATIO.V TARUJGit THE TUBES
S SPAN BETWEEN TUBES

Th TEMPERATURE AT OUTER SURFACE OF ARMSR $\&$ AT THE RE OF THE FINS
\qquad or 21 _mote DATE \qquad Busumet \qquad -r \qquad wonk ono tr \qquad
t_{t} THICKNESS OR STAINLESS STEAK TUBA
W_{R} TOTAL WEIGHT OF TUBE AND FINS
WT WEIGHT PER FOOT OF TUBE AND ARMOR.
W_{m}, WEIGHT OF INLET MANIFOLD
$W_{m_{2}}$ WEIGHT OF OUTLET MANITOLD
Wpm, equivalent weight tox pumping power in inlet manifold

K'ppmz EQUIVALENT WEKHT FOR PUMPINL POWER IN RETURN MANIFOLD.

WPpt EqUIVALENT WEIGH: FOR PUMPING POWER IN TUBES

WPRL EqUIVALENT WEIGHT FOR MANIROLD-TIEG INLET F OUTLET LOSSES

WeE TOTAL RADIATOR EQUIVALENT WEIGHT.
W_{C} TOTAL flUId flowrate
W_{0} FLUID FLOWRATE IN ONE HALF OF RADIATOR
U_{x} FLOW IN MANIFOLD AS A FUNCTION OF
Wt coolant flowrate per tube
\qquad
sunder \qquad
\qquad WORK ORDER \qquad
$\triangle P_{m}$ PRESSURE DROP ACROSS MANIFOLD
IPA PRESSURE DROP IN INLET MANIFOLD BETWEEN TUBES
$\triangle P_{B}$ PRESSURE DROP IN RETURN MANIFOLD BETWEEN TUBES

$$
\Delta P_{C}=\Delta P_{A}+\Delta P_{B}
$$

Ea EMISSIVITY OF SURFACE FACING SUN
ϵ_{b} EMISSIVITY IF SURfACE FACING AWAY FROM SUN

Sh THICKNESS OF FIN AT THE ROOT
δ_{C} THICKNESS OF FIN AT THE COD EDGE ζ_{P} PROFILE NUMBER AS DEFINED IN REF.I Pa DENSITY of ALuminum
pc DENSITY OF COOLANT FLUID
Pt DENSITY OF STAINLESS STEEL TUBE

ـ FIN EFFECTIVNESS - RATIO OF ACTUAL HEAT RADIATED FLAM FIN TO HEAT WHCH WOULD BE REJECTED IF FIN WAS AT CONSTANT TEMPERATURE
\qquad
bouncer \qquad or \qquad WORK ORDER

TUBE AND FIN OPTIMIZATION
THE RADIATOR TUBE AND FIN ARE ANALYZED BY LOOKING AT SEVERAL EQUAL HEAT REJECTION NODES IN WHICH THE TEMPERATURE DROPS AS A FUNCTION OF THE HEAT REJECTED FROM EACH
NODE. THE TUBE AND FIN MODEL ARE SHOWN ON THE FOLLOWING DIAGRAM

HEAT REJECTION FROM THE TUBE AND FIN

$$
q=q_{F}+q_{T}
$$

(1)

$$
q=\left(\frac{C_{1}}{2} T_{n}^{4} \pi D_{0}-D_{0}\right) L_{w}+z C_{1} \Omega L_{n} L_{w} T_{n}^{*}
$$

WHERE $\bar{C}_{1}=\sigma\left(\epsilon_{a}+\epsilon_{b}\right)$
$C_{2}=$ EXTERNAL ABSORBED HEAT FLUX
$\sigma^{2}=$ STEFAN BGLTZMAN CONSTANT
Ω IS THE FIN EFFECTIVENESS WHICH IS A FUNCTION OF SEVERAL PARAMETERS INCLUDING THE EXTERNAL HEAT FLUX AND IS EVALUATE O USING THE DATA OF MACKAY \& DACHA REF. I

$$
\begin{equation*}
W=\omega_{T} L_{\omega}+\rho_{1} L_{n} L_{\omega} \delta_{h}\left(1+\frac{\delta_{n}}{\delta_{3}}\right) \tag{2}
\end{equation*}
$$

FROM REF /

$$
\delta_{h}=\frac{C_{1} T_{n}^{3} L_{h}^{2}}{k \zeta_{p}}
$$

Substituting into Equal (2)

$$
W=\omega_{T} L_{\omega}+\frac{\rho C_{1} T_{h}^{3} L_{h}^{3} L \omega}{K_{a e} \xi_{r}}\left(1+\frac{\delta_{0}}{\delta_{h}}\right) \quad(z a)
$$

WHERE: $W_{T}=W E I G H T$ PER FOOT OF TUBE AND ARMOR EQNS (1) and ($2 a$) CAN BE SIMPLIFIED TO THE FORM

$$
\begin{align*}
& q=a L_{\omega}+b L_{\omega} L_{n} \tag{3}\\
& \omega=c L_{\omega}+e L_{n}^{3} L_{\omega} \tag{4}
\end{align*}
$$

SPECIFYING: q (CoNst) $\cdot \frac{\delta_{0}}{\delta_{n}}, \pi_{n}, \Omega, \xi_{0}, E_{p}, C_{2}$
we differentiate eqn (3) WRT L_{n}

$$
\begin{align*}
& 0=\left(a+b L_{n}\right) \frac{d L_{w}}{d L_{n}}+b L_{w} \\
& \frac{d L_{w}}{d L_{n}}=\frac{b L_{w}}{\left(a+b L_{n}\right)} \tag{5}
\end{align*}
$$

DIFFERENTIATING (4) WRT To L_{n}

$$
\begin{align*}
& \frac{d w}{d L_{h}}=c \frac{d L_{w}}{d L_{h}}+3 e L_{h}^{2} L_{w}+e L_{h}^{3} \frac{d L_{w}}{d L_{h}} \\
& \frac{d w}{d L_{n}}=\left(c+e L_{h}^{3}\right) \frac{d w}{d L_{n}}+3 e L_{h}^{2} L_{w} \tag{6}
\end{align*}
$$

SUBSTITUTE EQN (5) INTO (6) FOR MINIMUM WEIGHT SET EQN (b) $T 0$

$$
\frac{d w}{d L_{n}}=b L_{w}\left(\frac{c+e L_{h}^{3}}{a+b L_{h}}\right)+3 e L_{h}^{2} L_{w}=0
$$

\square wonk onben. \qquad

FROM WHICH

$$
\begin{equation*}
L_{h}^{3}+\frac{3}{2} \frac{a}{b} L_{h}^{2}-\frac{c}{2 e}=0 \tag{7}
\end{equation*}
$$

THIS EQN. DEFINES AN OPTIMUM FIN WIDTH

FROM EQ'N (3)

$$
\begin{equation*}
L_{w}=\frac{q}{a+b L_{h}} \quad \text { OPTIM. LENGTH } \tag{8}
\end{equation*}
$$

REARRANGING EQN (7) AND COMBINING wITH EQN (4) IT CAN BE SHOWN THAT THE OPTIMUM COMBINED TUBE AND FIN WEIGHT IS

$$
\begin{equation*}
W_{R}=\frac{3}{2} W_{T} L_{w}\left[\frac{b L_{n}+a}{b L_{n}+\frac{3}{2} a}\right] \tag{9}
\end{equation*}
$$

WHERE:

$$
\begin{aligned}
& a=\left(\frac{C_{1}}{2} T_{3}^{4} \pi D_{0}-C_{2} D_{0}\right) \\
& b=2 C_{1} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& c=\omega_{T} \\
& e=\frac{\rho_{a} C_{1} T_{n}^{3}\left(1+\frac{\delta_{c}}{\delta_{n}}\right)}{K_{d} \zeta_{p}}
\end{aligned}
$$

PROKCTEED AREA OF FIN \& TUBE

$$
A=D_{0} L_{w}+2 L_{w} L_{n}
$$

\qquad
burnet \qquad
\qquad WORK ORDER \qquad
THE DATA OF MACEAY \& EACH 15 ILLUSTRATED IN FIGURE, WHICH SHOWS FIN EFFECTIUNESS AS A FUNCTION OF SEVERAL PARAMETERS, THE THEORETICAL PROFILE LINE IS DEFINED AS A LOCI OF POINTS WHICH DESCRIBES A MINIMUM WEIGHT
FIN FOR A GIVEN ENVIRONMENTAL PARAMETER. DATA ALONG THE THEORETNAL PROFILE LINE ARE USED IN OPTIMIZING TUBE AND FIN DIMENSIONS IN THE PRECEDING ANALYSIS.

\qquad
\qquad
RADIATOR MHINIFULD OPTIMIZATION
IN OPTIMIZING THE RADIATOR A RISC CONFKUURH II ON MUST BE ASSUMED. IN THIS ANALYSIS THE RADIATOR IS ASSUMED TO BE IN A FEAT CONFIGURATION WITH THE TUBES AND MANIFOLDS ARRANGED AS SHOWN BELOW.

IN OPTIMIZING THE RADIATOR FOR MINIMUM WEIGH CONSIDERATION IS GIVEN TO THE WEIGHT EQUIVALENT OF PUMPING POWER REQUIRED TO CIRCULATE THE COOLANT FLUID IN THE RADIATOR. THE MANILA: ARE ASIUMED TO HAVE A VARYING FLOW CROSS SECTIONS ALONG THEIR LENIN, AND THAT THE PRESSURE DROP
\qquad work ono cen \qquad
PER UNIT LENGTH REMAINS CONSTANT.ALDNG THE MANIFOLD.

IN THE ANALYSIS WHICH FOLLOWS FIRST THE INLET AND RETURN MANIFOLD DIAMETERS ARE OPTIMIZED FOR MINIMUM WEIGHT THEN THE NUMBER OF TUBES IS OPTIMIZED

INLET MANIFOLD

$$
w_{0}=\frac{1}{2} \omega_{c} \pi / \mathrm{sec}
$$

ASSUME

$$
\begin{aligned}
& \frac{\Delta P}{\Delta x}=\text { CONS } \\
& \frac{\Delta P}{\Delta x}=\frac{f}{D_{x}} \frac{V_{x}^{2}}{2 g} \\
& V_{x}=\frac{\omega_{x}}{\hat{r}_{\alpha} P_{c}}=\frac{4 \omega_{x}}{\pi D_{x}^{2} C_{c}}
\end{aligned}
$$

THEREFORE:

$$
\frac{\Delta P}{\Delta x}=\left(\frac{\delta f}{g \pi^{2} P_{c}^{2}}\right)\left(\frac{\omega_{x}^{2}}{D_{x}^{2}}\right)
$$

(10)
summit \qquad or \qquad wonk onder

If we have equal plow distribution for all TUBES

$$
w_{x}=K, x
$$

THEREFORE

$$
D_{x}=K_{z} x^{0.4}
$$

MANIFOLD WEIGHT INCLUDING INVENTORY

$$
\begin{aligned}
& W_{m_{1}}=\frac{\pi}{4} \int_{L_{1}}^{L_{0}^{2}} D_{x}^{2} \rho_{c} d x+\pi \int_{L_{1}}^{t_{0}}\left(D_{x}+t_{t}\right) t_{t} \rho_{t} d x+\pi \int_{L_{1}}^{L_{0}}\left(D_{x}+2 t+t_{1}\right) p_{2} t_{L} \\
& W_{m_{1}}=\frac{\pi}{4} \rho_{c} \int_{c_{1}}^{L_{0}} K_{2}^{2} x^{0.8} d x+\pi\left(\rho_{t} t_{t}+\rho_{a} t_{a}\right) \int_{c_{1}}^{L_{2}} x^{0_{1}} d x+ \\
& \left.\pi\left[t_{t}^{t_{1}^{2}} \rho_{t}+\left(2 t_{t}+t_{a}\right) \rho_{a} t_{a}\right] x\right]_{L_{1}}^{L_{0}}
\end{aligned}
$$

BuT $D_{m}=K_{2} L_{0}^{0.4}$
IF $\omega_{t}=$ FLOW/TUBE AND WE LET

$$
\frac{\omega_{t}}{\omega_{0}}=\frac{L_{1}}{L_{0}}
$$

\qquad wonk order_ \qquad IT CAN BE SHOWN THAT

$$
\begin{aligned}
& W_{m_{1}}=\frac{\pi}{4} \rho_{c} \frac{D_{m}^{2}}{1 \cdot \delta}\left[\frac{1-\left(\frac{\omega_{t}}{w_{c}}\right)^{\delta}}{1-\frac{w_{t}}{W_{0}}}\right]+\pi\left(\rho_{t} t_{t}+\rho_{a} t_{a}\right) \frac{D_{m} L}{1 \cdot 4}\left[\frac{1-\left(\frac{\omega_{t}}{\omega_{t}} \cdot \psi\right.}{1-\frac{\omega_{0}}{\omega_{0}}}\right] \\
& +\pi\left[t_{t}^{2} \rho_{t}+\left(z t_{t}+t_{a}\right) \rho_{a} t_{a} L\right.
\end{aligned}
$$

THIS EXPRESSION CAN BE SIMPUFIED BY MAcING SOME APPROXIMATIONS

$$
\begin{aligned}
& \lim _{\frac{w_{1}}{w_{0}} \rightarrow 1} \frac{1-\left(\frac{w_{t}}{w_{0}}\right)^{14}}{1-\frac{w_{t}}{w_{0}}}=\lim _{\frac{w_{1}}{w_{0}} \rightarrow 1} \frac{1.4 \frac{w_{1}}{w_{0}} 0.4}{-1}=1.4 \\
& \lim _{\frac{w_{1}}{w_{0}} \rightarrow 0} \frac{1-\left(-\frac{w_{t}}{w_{0}}\right)^{1.4}}{1-\frac{w_{t}}{w_{0}}}=1.0 \\
& \text { if } \quad \frac{w_{t}}{w_{0}} \ll \frac{1}{30} \quad 1<\frac{1-\left(\frac{w_{t}}{w_{0}}\right)^{1.4}}{1-\frac{w_{t}}{w_{0}}}<\frac{1-10086}{1-0337}=1.024 \\
& \text { y } \frac{w_{t}}{w_{0}} \ll \frac{1}{30} \quad 1<\frac{1-\left(\frac{w_{t}}{w_{0}}\right)^{1 / 8}}{1-\frac{w_{t}}{w_{0}}}<\frac{1-.00032}{1-.0333}=1.034
\end{aligned}
$$

THERE FORE

$$
\begin{align*}
& W_{m} \cong \frac{1.03 \pi<\rho_{t} D_{m}^{2}+\frac{1.02 \pi}{1.4}<\left(\rho_{t} t_{t}+\rho_{2} t_{c}\right) D_{m}}{1.8 \times 4}+\pi\left[t_{t}^{2} \rho_{t} \because\left(2 t+t_{c}\right) t_{a} \rho_{a}\right] L \\
& W_{m_{1}} \cong K_{10} D_{m}^{2} L+K_{11} D_{m} L+K_{12} L
\end{align*}
$$

\qquad work order \qquad
MANIFOLD PUMPING POWER WEIGHT EQUIVALENT

FROM EQN (10) THE INLET MANIFOLD PRESSURE DROP IS

$$
\Delta P_{m}=\left(\frac{8 f}{g \pi P_{c}^{2}}\right)\left(\frac{\omega_{0}}{D_{m}^{5}}\right) L_{m}
$$

THE MANIFOLD PUMPING POWER MAY BE EVALUATED BY CONSIDERING THE FLOW DISTRIBUTION IN THC MANIFOLD

$$
P_{P M}=\omega_{0} \Delta P_{1}+\left(\omega_{0}-2 \omega_{t}\right) \Delta P_{2}+\left(\omega_{0}-4 \omega_{t}\right) \Delta P_{3} \cdots\left(\omega_{0}-2 \Delta \omega_{t}\right) \Delta P_{1}
$$

WHERE:
$N_{1}=\frac{1}{2}$ NUMBER OF TUBES PER MANITOU
$\Delta P_{1}=\Delta P_{2}=\Delta P_{N}=\Delta P_{A} \quad$ PRESSURE DRAD iN MANIFOLD BETWEEN TUBES

$$
\begin{aligned}
P_{P M} & =W_{0} \Delta P_{M}-2 W, \Delta P_{A}\left[1+2+3+\cdots N_{1}\right] \\
& =W_{0} \Delta P_{M}-2 W, \Delta P_{A} \frac{N_{1}\left(N_{1}+1\right)}{2}
\end{aligned}
$$

\qquad
\qquad
subuct \qquad
\qquad

BUT $\quad \Delta P_{A} N_{1}=\Delta P_{m}$

$$
2 \omega_{1} N_{1}=\omega_{0}
$$

$$
P_{p m}=\omega_{0} \Delta P_{m}-\frac{\omega_{0}}{2 N} \Delta P_{m}(N+1)
$$

$$
=\frac{1}{2} \omega_{0} \Delta P_{m}\left(1-\frac{1}{N_{1}}\right)
$$

IE N, 1 S $\quad .934<1-\frac{1}{N},<1$
THECEFORE APPROKIMATE

$$
W_{\text {PPm }}=\frac{.934}{2} \omega_{0} \Delta P_{m} K_{H}
$$

$$
\text { WHEIE } \quad K_{H}=\frac{\angle B \quad \text { SYSTEM WEIGHY) }}{\frac{F T-L B}{H R}(\text { IHTHNNWC PIWER })}
$$ IF WE LET $K_{3}=\left(\frac{8 f \omega_{0}^{3}}{g \pi_{c}^{2} \rho_{c}^{2}}\right)\left(\frac{934}{2} \cdot K_{H}\right)$ THEN

$$
w_{p p m}=\frac{k_{3} \angle m}{D_{m}^{5}}
$$

INLET MANIFOLD EQUIVALENT WEIGHT

$$
W_{M E}=W_{M}+W_{p p m}=K_{10} S_{m}^{2} L+K_{11} D_{m} L+K_{12} L+K_{3} L D_{m}^{-5}
$$

\qquad or 21 _mate DATE \qquad
gumitet \qquad or \qquad WORK ORDER \qquad
DIFFERENTIATING WAT Δ_{m} WITH \angle CONSTANT AND EQUATING TO ZERO

$$
\left.\frac{\partial W_{M S}}{\partial D_{0}}\right|_{C=\text { cans }}=2 K_{10} D_{m} L+K_{1} L-5 K_{3} L D_{m}^{-6}=0
$$

$$
D_{m}^{7}+\frac{K_{11}}{2 K_{10} D_{m}^{6}}+\frac{5 K_{3}}{2 K_{10}}=0 \quad \text { (12) }
$$

EQ'N 12 CAN BE SOLVED TO DETERMINE THE OPTIMUM MANIFOLD INLET DIAMETER.

IN A SIMILAR FASHION IT CAN BE SHOWN THAT THE RETURN MANIFOLD OPTIMUM OUTLET DIAmeter can be evaluate by the equation

$$
D_{1}^{7}+\frac{1}{2} \frac{K_{11}}{K_{10}} D_{1}^{6}-\frac{5}{16} \frac{K_{3}}{K_{10}}=0 \quad(13)
$$

RETURN MANIFOLD EQUIVALENT WEIGHT

$$
W_{2}=K_{10} D_{1}^{2} L+K_{41} D_{1} L+K_{12}+\frac{K_{3}}{8} D_{1}^{-5}(14)
$$

\qquad
gunect \qquad
\qquad WONK ORDER \qquad
OPTIMILATION OF NUMBLER OF TUBES

If Wer derinine:

$$
\Delta P_{A}+\Delta P_{B}=\Delta P_{C}
$$

$$
\Delta P_{2}=\Delta P_{1}-\Delta P_{c} \quad \Delta P_{3}=\Delta P_{2}-\Delta P_{c}
$$

THEREFORE THE PUMPING POUER FOR THG TOBES 1 S

$$
\begin{aligned}
P_{P r} & =W_{T}\left(\Delta P_{1}-\frac{1}{2} \Delta P_{c}\right)+W_{t}\left(\Delta P_{1}-1 \frac{1}{2} \Delta P_{c}\right)+\omega_{H}\left(\Delta P_{1}-2 \frac{1}{2} \Delta P_{c}\right) \\
& +\cdots W_{t}\left[\Delta P_{1}-\left(N-\frac{1}{2}\right) \Delta P_{c}\right]
\end{aligned}
$$

WHICA CAN EE REDUCED TO THE HORM

$$
P_{P_{t}}=W_{+} N\left[\Delta P_{1}-\frac{\Delta P_{c}}{2} N\right]=w_{0}\left[\Delta P_{1}-\frac{\Delta P_{M_{1}}+\Delta P_{m_{0}}}{2}\right]
$$

\qquad
suet \qquad or \qquad WONK ORDER \qquad

$$
P_{P t}=W_{0} \Delta P_{\text {AVG }}
$$

Where alive is the average pressure drop ACROSS THE TUBES.

THE EQUIVALENT WEIGHT FOR PUMPING POWER REQUIRED TO CIRCULATE FLUID THROUGH THE TUBES

$$
W_{\text {PPI }}=K_{*} \omega_{0} \Delta P_{\text {Ave }}=K_{H} \omega_{0} f \frac{L_{A}}{D_{t}} \frac{V_{t}^{2}}{z g}
$$

BUT $\angle_{A}=A V E$ TUBE $\angle E N G T H=\frac{L_{W}}{N_{T}}$
$N_{r}=$ TOTAC NUMBER OF TUBES in radiator
$D_{t}=$ TUBE 1.0 .
$A_{t}=$ TUBE cross sectional area
$f=$ FRICTION FACTOR

$$
\begin{aligned}
w_{\text {PDT }} & =\left(\frac{K_{A} f}{D_{t} A_{t}^{2} \rho^{2} g g}\right) \omega_{t}^{2} \frac{\omega_{0} L}{N_{t}} \omega \\
& =\left(\frac{K_{H} f \omega_{0}^{3} L_{w}}{D_{t} A_{t}^{2} \rho^{2} 2 g}\right) \frac{1}{N_{t}^{3}}=A_{5} N_{t}^{-3}
\end{aligned}
$$

THE EQUIVALENT WEIGHT FOR TUBE INLET COSSES

$$
W_{P_{L}}=1.4 \frac{K V_{t}^{2}}{2 g} \omega_{t}=\frac{0.7 K \omega_{0}^{3}}{g A_{t}^{2} \rho^{2}} \cdot \frac{1}{N_{t}^{2}}=A_{6} N_{t}^{-3} \quad(16)
$$

\qquad wonk onden

THE TOTAC RADIATOR EQUIVALENT WGIGHT

$$
\begin{aligned}
W_{R E}= & W_{R}+W_{m 1}+2 w_{m_{2}}+w_{p p m_{1}}+2 w_{P m_{2}}+w_{\text {Pr }} \\
& +w_{r P_{L}}
\end{aligned}
$$

IE S = SPAN ACROSS ONE TUBE AND FIN

$$
5=D_{0}+2 L_{n}
$$

$$
\therefore m=\frac{S N T}{2} \text { MANIROCD LENGTH SNE PANEL }
$$

$$
\begin{aligned}
& W_{c}=\frac{3}{2} W_{t} L_{\omega}\left[\frac{D L_{n}+a}{b L_{n}+\frac{1}{2} a}\right]=A_{0} \\
& \omega_{m}=\left[K_{10} D_{m}^{2}+K_{11} D_{m}+K_{12}\right] L_{m}=\frac{A_{2} S N_{T}}{2} \\
& \omega_{m_{2}}=\left[K_{10} D_{1}^{2}+K_{11} D_{1}+K_{12}\right] C_{m}=\frac{A_{3} S N_{T}}{2} \\
& W_{P P M_{1}}=\frac{K_{3}}{D_{m}^{5}} L_{m}=\frac{A_{3} S N_{T}}{Z} \\
& \text { (INLET MANHFC(1)) } \\
& W_{\text {PPM }}=\frac{K_{3}}{8 D_{1}^{5}} 4 m=\frac{A_{4} S N_{7}}{2} \quad \text { (estunn manifad) } \\
& W_{P P T}=\left(\frac{K_{H} f W_{O}^{3} L_{\omega}}{D_{t} A_{t}^{+} \rho^{2} 2 g}\right) \frac{1}{N_{T}^{3}}=A_{S}-N_{T}^{-3} \\
& W_{P I_{L}}=\left(\frac{0.7 K_{1} \omega_{0}^{3}}{g A_{t}^{2} \theta^{\circ}}\right) \frac{1}{N_{T}^{-3}}=A_{6} N_{T}^{-3}
\end{aligned}
$$

THERSEDE FOR OPTIMUM N_{T}

$$
\begin{gather*}
W_{\text {Re }}=W_{R}+\left[\frac{A_{1} S}{2}+A_{2} 5+\frac{A_{5} S}{2}+A_{4} 5\right] N+\left[A_{5}+A_{6}\right] N_{T}^{-3} \\
\left.\frac{\partial W_{R e}}{\partial N_{T}}\right]_{W_{n \text { ConsT }}}=\left(\frac{A_{1}}{2}+A_{2}+\frac{A_{3}}{2}+A_{4}\right)_{S}-3\left(A_{5}+A_{6}\right) N_{T}^{-4}=0 \\
N_{T \text { OPT }}=\left[\frac{\left(\frac{A_{1}}{2}+A_{2}+A_{3}+A_{4}\right) 5}{3\left(A_{5}+A_{6}\right)}\right]^{-1 / 4} \tag{17}
\end{gather*}
$$

APPENDIX B

INTRODUCTION

This report presents the method of analysis used to detemine the optimu: weight of a compact mercury condenser for the SNAP-3 system. This method of analysis was used to produce curves such as the one shown in Figure 1. The dotailed calculations, results and conclusions of the analysis are not a part of this report.

DISCUSSION

The condenser analyzed was a compact counterflow type. The coolant passages have a constant height and width along the condenser. The mercury passages have a constiant height but the width is gradually raduced toward the exit, resulting in a tapered passage. The mercury condensing film coefficient considered in the analysj.s was so high compared to the coolant coefficient that fins were not used on the mercury passages. The core geometry and condenser configuration are shown each on Figure 2. The following given data was kept constint for each casearanalyed:
a. Condenser heat load
b. Coolant flow rate
c. Coolant exit temperature
d. Mercury inlet and exit temperature
e. Mercury inlet quality
f. Allowable mercury pressure drop
g. No subcooling of the condensate
h. Coolant - OS-124

In general, the optimization procedure consisted 0 : the following steps:
a. Based on the given data determine the required heat transfer overall condratance (UA).
b. Assume 3 different Reynolds numbers for the coolant. For each one determine:

1. Coolant flow area. The mercury inlet flow area was taken as equal to the coolant flow area. For a counterflow type heat exchanger the two added together define the condenser frontal area. At the mercury exit the area was fixed by the tapering of the mercury passage. The coolant flow area was constant. From these the exit total area was calculated.
2. Overall unit conductance (U).
3. Heat transfer area.
4. Condenser dimensions.
5. Weight of the condenser. coolant and mercury inventory and manifolds. Let these added together be equal to $\sum \mathrm{W}$.
6. Pressure drop of coolant through the condenser and the associated pumping power.
7. Weight penalty due to pumping power. $\left(W_{\triangle P P}\right)$.
c. Plot ΣW and $W_{\Delta P P}$ versus coolant Reynolds number. A typical plot is shown in Figure 1. By adding ΣW and $W_{\Delta P P}$ at varicus Reynolds numbers the curve of total weight penalty $\left(W_{T}\right)$ is obtained. As can be seen in the figure, this curve has a minimum value, which represents the condenser of minimum weight. It also has a corresponding coolant optinum Reynolds number. The size of the optimum condenser can be determined by repeating the calculation using the optimum Reynolds number or by interpolating the results already obtained.

The detailed description of the method of analysis is divided in two parts, (A and B). Part A covers the complete analysis as described above. Part B is an extrapolation of the results obtained in Part A to correct for a higher condensing temperature and heat load.

Symbols	Description	Units
Ablockage	Condenser frontal area blocked by vertical plates	$m N^{2}$
$A_{\text {frontal }}$	Condenser frontal area	[N^{2}
$\left(A_{f}\right)_{\text {c }}$	Coolant flow area	$\underline{~} \mathrm{~N}^{2}$
$\left(A_{f}\right)^{0}$	Mercury flow area at mercury inlet	[${ }^{2}$
$\left(\mathrm{A}_{\mathrm{HT}}\right)_{\mathrm{c}}$	Heat transfer area based on coolant side	FT^{2}
b	Plate spacing in coolant passages	IN
b^{\prime}	Plate spacing in mercury passage at mercury inlet	IN
C_{1}	Group of parameters	$\underline{\mathrm{n}} \mathrm{v}^{2}$
C_{2}	Proportionality constant	--
$\left(c_{p}\right)_{c}$	Specific heat of coolant	BTV/Lb ${ }^{\circ}{ }^{\circ} \mathrm{F}$
$\left(\mathrm{c}_{\mathrm{p}}\right)_{\mathrm{Hg}}$	Specific heat of mercury	$\mathrm{BTJ} / \mathrm{Lb} \mathrm{O}^{\circ} \mathrm{F}$
C_{c}	Total heat capacity of coolant	$\mathrm{BTU} / \mathrm{Hr}-{ }^{-} \mathrm{F}$
C_{Hg}	Total heat capacity of mercury	$\mathrm{BTU} / \mathrm{Hr}-{ }^{-} \mathrm{F}$
$\mathrm{C}_{\text {min }}$	Value of lower heat capacity	$\mathrm{BTV} / \mathrm{Hr}-{ }^{\circ} \mathrm{F}$
$\mathrm{C}_{\text {max }}$	Vaine of higher heat capacity	$\mathrm{BTO} / \mathrm{Hr}-{ }^{\circ} \mathrm{F}$
D	Dimension in coolant manifold	IN
D_{H}	Hydraulic diameter	FT
f	Coolant friction factor	Dimensionless
h_{c}	Coolant heat transfer film coefficient	$\mathrm{BTV} / \mathrm{Hr}-{ }^{\circ} \mathrm{F}-\mathrm{FT}{ }^{2}$
K.	Thermal conductivity of coolant	$\mathrm{BTV} / \mathrm{Hr}-{ }^{\circ} \mathrm{F}-\mathrm{FT}$
K_{ss}	Thermal conductivity of stainless steel	$\mathrm{BTU} / \mathrm{Hr}-{ }^{\circ} \mathrm{F}-\mathrm{FT}$

Symbols	Description	Units
ℓ	Length of fins	FT
m_{c}	Fin parameter	FT^{-1}
N	Total number of mercury and coolant passages	--
N•1	Total number of vertical divider plates between passages	--
$\left.N_{F}\right)_{c}$	Fin effectiveness, coolant side	-
$\left.\mathrm{N}_{\mathrm{F}}\right)_{\mathrm{Hg}}$	Fin effectiveness, mercury side	--
$\left.N_{0}\right)_{e}$	Surface effectiveness, coolant side	--
$\left.\mathrm{N}_{\mathrm{o}}\right)_{\mathrm{Hg}}$	Surface effectiveness, marcury side	-
NTU	Number of transfer units	Dimensionless
N_{PR}	Prandtl Number, coolant	Dimensionless
N_{RE}	Reynolds Number, coolant	Dimensionless
ΔP_{c}	Coolant pressure drop	PSI
Q_{c}	Condenser heat load	BTU/HR
$\triangle Q$	Increment in condenser heat load	BTU/HP.
r	Dimension in mercury manifold	IN
s	Dimension in mercury manifold	IN
$\mathrm{T}_{\mathrm{C}_{1}}$	Coolant inlet temperature	${ }^{\circ} \mathrm{F}$
$T_{c_{2}}$	Coolant exit temperature	${ }^{0} \mathrm{~F}$
$\mathrm{T}_{\mathrm{Hg}}^{1}$	Mercury inlet temperature	${ }^{\circ} \mathrm{F}$
$\mathrm{T}_{\mathrm{Hg}_{2}}$	Mercury exit temperature	${ }^{\circ} \mathrm{F}$
$\Delta r_{\log }$	Log mean temperature differ snce	${ }^{\circ} \mathrm{F}$
t_{1}	Plate spacing in mercury passages at mercury exit	IN

Symbols	Description	Units
U_{c}	Overall unit conductance	BTU/ $/ \mathrm{HR}-{ }^{\circ} \mathrm{F}-\mathrm{FT}^{2}$
$(\mathrm{UA})_{\text {req }}$	Overall conductance	$\mathrm{BTU} / \mathrm{HR}-{ }^{\circ} \mathrm{F}$
V_{c}	Coolant volume	FT^{3}
$\dot{W}_{\text {c }}$	Coolant flow rate	LB/HR
$\dot{\mathrm{W}}_{\mathrm{Hg}}$	Mercury flew rate	LB/HR
$\mathrm{W}_{\mathrm{Hg}_{1}}$	Weight of mercury in mercury exit manifold	LBS
W_{2}	Weight of mercury in coolant inlet manifold	LBS
W_{c}	Weight of coolant in condenser	LBS
$\left(W_{c}\right)_{\text {manif. }}$	Weight of coolant in two coolant manifolds	LBS
$\left(W_{\text {manif }}\right)_{c}$	Total weight of coolant manifolds	LBS
$\left(W_{\text {manif }}\right)$	Total weight of mercury manifolds	LBS
$W_{\text {cond }}$	Condenser weight (empty)	LBS
Wplates	Weight of condenser plates	LBS
$W_{\text {fins }}$	Weight of condenser fins	LBS
$W^{*} \mathrm{PP}$	Weight penalty due to pumping power	LBS
W_{T}	Total weight penalty	LBS
X	Mercury inlet quality	-
X	Width of condenser at mercury inlet	IN
x_{0}	Width of condenser at mercury exit	1N
y	Height of condenser	In
2	Length of condenser	IN
$\Delta \mathrm{z}$	Increment in condenser length	IN

Greek Symbols	Description	Units
α	Angle in mercury manifold	Degrees
8	Condenser heat transfer area Conderiser volume between the plates	$\frac{\mathrm{FT}^{2}}{\mathrm{FT}^{3}}$
δ	Fin thickness	IN
0	Total fin area Total heat transfer area	--
ψ	Group of parameters	--
μ_{c}	Coolant dynamic viscosity	LB/FT-HR
P_{c}	Density of coolent	$\mathrm{LB} / \mathrm{FT}^{3}$
P_{88}	Density of stainless steel	$\mathrm{LB} / \mathrm{FT}^{3}$
ϵ	Heat exchanger effectiveness	--

PART A

1. Given Da^{\prime}.. :

$$
\begin{aligned}
& Q_{c}=\text { condenser heat load } \\
& \dot{W}_{c}=\text { coolant flow rate } \\
& \dot{W}_{H g}=\text { mercury flow rate } \\
& X=\text { mercury inlet quality }
\end{aligned}
$$

$\mathrm{T}_{\mathrm{Hg}_{1}}=$ me-nury inlet temperature
$\mathrm{T}_{\mathrm{Hg}_{2}}=$ mercury temperature at end of condensing process
$T_{c_{2}}=$ coolant exit temperature
2. Thermo Cycle - Assume a counterflow heat exchanger

Temp.

For the cases analyzed $\mathrm{T}_{\mathrm{Hg}_{1}}-\mathrm{T}_{\mathrm{Hg}_{2}}=20^{\circ} \mathrm{F}$
3. Coolant Inlet Temperature $\left(T_{c_{1}}\right)$
$T_{c_{2}}-T_{C_{1}}=\frac{Q_{\text {cond }}}{C_{P_{0}}{W_{c}}_{C}}$
Compute $T_{c_{1}}=T_{c_{2}}-\frac{Q_{\text {cond }}}{C_{p_{c}} \hat{W}_{c}}$
$\mathrm{C}_{\mathrm{p}_{\mathrm{c}}}$ must be at average of $\mathrm{T}_{\mathrm{C}_{2}}$ an $\mathrm{T}_{\mathrm{C}_{1}}$ and will require some trial
and error calculations to use the proper value.
4. Heat Exchanger Effectiveness (\in)

Let $\mathrm{C}_{\mathrm{Hg}}=\mathrm{W}_{\mathrm{Hg}} \mathrm{C}_{\mathrm{Hg}}$
Let $C_{c}=W_{c} C_{p}$
For a condensing process $\mathrm{C}_{\mathrm{p}_{\mathrm{Hg}}}=\infty$. However, there is a drop in
temperature from $\mathrm{T}_{\mathrm{Hg}_{1}}$ to $\mathrm{T}_{\mathrm{Hg}_{2}}$ due to the mercury pressure drop and we will define a fictitious $\mathrm{C}^{\prime} \mathrm{Hg}^{\prime}$ as follows:
$\mathrm{C}_{\mathrm{Hg}}^{\prime}\left(\mathrm{T}_{\mathrm{Hg}_{1}}-\mathrm{T}_{\mathrm{Hg}_{2}}\right)=\mathrm{C}_{\mathrm{c}}\left(\mathrm{T}_{\mathrm{C}_{2}}-\mathrm{T}_{\mathrm{C}_{1}}\right)$

$\frac{C_{c}}{C_{H g}^{T}}$ is the equivalent of $\frac{C_{m i n}}{C_{\max }}$ used by Compact Heat Exchangers Book, Reference (1).

Compute $\frac{C_{\text {min }}}{C_{\text {max }}}$
compute $\epsilon=\frac{\mathrm{c}_{\mathrm{c}}\left(\mathrm{T}_{\mathrm{c}_{2}}-\mathrm{T}_{\mathrm{c}_{1}}\right)}{\mathrm{Cmin}^{\left(\mathrm{T}_{\mathrm{Hg}_{1}}-\mathrm{T}_{\mathrm{c}_{1}}\right)}}$
$=\frac{T_{c_{2}}-T_{c_{1}}}{T_{H_{g_{1}}}-T_{c_{1}}}$

Read NTU (Number of Transfer nits) from Figure 2 of
Reference (1) as a function of ϵ and $\frac{C_{\text {min }}}{C_{\text {max }}}$
5. Overall Heat Transfer Conductance (UA req $)$

Compute UA ${ }_{r e q}=(N T U)\left(\dot{W}_{c} C_{p_{c}}\right)=B T U / H R-{ }^{\circ} F$

6. Heat Exchanger Core

Assume plain plate surface type 11.1 for coolant core (no fins on mercury side). The following data for that type of surface obtained from Reference (1).

D_{H}	$:$ Hydraulic diameter	.01012 FT
δ	$:$ Fin thickness	.006 IN.
β	$: \frac{\text { Heat Transfer Area }}{\text { Volume Between Plates }}$	$367 \frac{\mathrm{FT}^{2}}{\mathrm{FT}^{3}}$
Φ	$: \frac{\text { Fin Area }}{\text { Total Area }}$.756
b	$:$ Plate Spacing	.25 IN.

It is also assumed that the plates are made of stainless steal 316 and are . 035 in. thick.
7. Coolant Properties

Got the following properties at the average of $T_{c_{1}}$ and $T_{c_{2}}$

K_{c}
$N_{P R}=\frac{{ }_{c}{ }_{c}{ }^{C_{P}}{ }_{c}}{K_{c}}$
8. Coolant Flow Area Required $\left(A_{f}\right)_{c}$

Assume a Reynolds number for the coolant (N_{RE})

9. Coolant Film Coefficient $\left(h_{c}\right)$

For $N_{R E}$ assumed get ψ from Figure 63 of Reference (1).
Where $\psi=\left[\begin{array}{l}h_{0}\left(A_{f}\right)_{c} \\ \dot{W}_{c}\left(C_{p}\right)_{c}\end{array}\right]\left[N_{P R}\right]^{2 / 3}$
Compute $h_{c}=\frac{\psi{ }_{c}{ }^{C_{p_{c}}}}{\left(N_{P R}\right)^{2 / 3}\left(A_{f}\right)_{c}}=\frac{B T U}{H R-{ }^{0} \mathrm{~F}-F_{T} T^{2}}$
10. Fin Effectiveness - Coolant Side $\left(N_{1}\right)$

Compute $n_{c}=\sqrt{\frac{2 h_{d}}{K_{s a} \delta}}=(\mathrm{FT})^{-1}$
(δ is defined in Section 6)
Compute $X=\frac{\mathbf{b}}{(12)(2)}=\mathrm{FT}$
(b is defined in Section 6)
Compute al
Sat $\operatorname{Tanh}\left(m_{c} l\right)$
Compute $\left(N_{f}\right)_{c}=\frac{\operatorname{Tan} h\left(m_{c} l\right)}{m_{c} l^{l}}$
11. Fin Effectiveness - Mercury Side $\left(\mathrm{N}_{\mathrm{f}}\right)_{\mathrm{Hg}}$

A condensing film coefficient of $10,000 \mathrm{BTU} / \mathrm{HR}^{\circ} \mathrm{F}-\mathrm{FT}^{2}$ was assumed on the mercury side, as suggested by Reference (2). This will make $\left(\mathrm{N}_{\mathrm{f}}\right)_{\mathrm{Hg}}$ so lm that it can be neglected. In other words, the thermal resistance due to the mercury film will be neglected.
12. Surface Effectiveness - Coolant Side ($\left.\mathrm{N}_{\mathrm{o}}\right)_{\mathrm{c}}$
$\left(N_{0}\right)_{c}=1-\phi\left[1-\left(N_{f}\right)_{d}\right]$
where \oint is defined in Section 6
13. Overall Unit Conductance (U_{c})
(Based on coolant side)
(From Reference (1))

Neglecting the right term because of the high value of h_{Hg} we gets
$U_{c}=\left(N_{o}\right)_{c} \quad h_{c}=B T U / H R={ }^{\circ} F-F^{2}$
14. $\frac{\text { Heat Transfer Area Required }}{\text { (Based on coolant side) }}\left(A_{\mathrm{HT}}\right)_{\mathrm{c}}$

15. Coolant Volume (V_{c})

Compute $\mathrm{V}_{\mathrm{c}}=\frac{\left(\mathrm{A}_{\mathrm{HT}}\right)_{c}(\text { from Section 14) }}{\beta \text { (from Section 6) }}=\mathrm{FT}^{3}$
16. Length of Condensor 2

Compute $z=\frac{V_{c}(\text { from Section 15) }}{\left(A_{f}\right)_{c}(\text { from Section 8) }}=\mathrm{FT}$
17. Condenser Dimensions on Mercury Inlet

Let $\left(A_{f}\right)_{c}=$ Coolant flow area; same at inercury inlat and mercury exit (in 2)
Let $\left(A_{f}\right)_{H g}=$ Mercury flow area at inlet (in ${ }^{2}$)

Iet N = Total number of coolant and mercury passages
Let b Coolant gap (in)
Let bl mercury gap (in)
Let x - Width of condenser at mercury inlet (in)
Let $y=$ Height of condenser at mercury inlet (in)
Based on experimental data on condensing mercury pressure drop presented in Reference (2), a proportion was astablished between the condenser of Reference (2) and the condenser being analyzed. In order to maintain a pressure drop of 4 pai on the mercury, ine proportion resulted in the following expression for the mercury passage gap on the mercury inlet (b^{1}).

$$
\begin{equation*}
b^{\prime}=2 . z 9\left[\frac{z}{L^{(y N)^{2}}}\right]^{1 / 3} \tag{1}
\end{equation*}
$$

($b^{\prime}=$ inches, $Z=F T, y=$ inches)

From the above Il gure we have:

$$
\begin{align*}
& \left(A_{f}\right)_{c}=y b \frac{N}{2} \tag{2}\\
& \therefore y N=\frac{2\left(A_{f}\right)_{d}}{b}
\end{align*}
$$

Substituting this value oin(y N)in Equation (1), we get:

$$
b^{\prime}=2.29\left[\frac{7 b^{2}}{4\left(A_{f}\right)_{c}^{2}}\right]^{1 / 3} \quad=\text { inches }
$$

The mercury flow area is given bys

$$
\begin{equation*}
\left(A_{f}\right)_{H g}=b^{\prime} y \frac{N}{2}=\frac{b^{i}}{2} y N \tag{3}
\end{equation*}
$$

Substituting (y w ifrom Equation (2) into (3), we get:

$$
\left.\left(A_{f^{\prime}}\right)^{b^{\prime}}=\frac{2\left(A_{f}\right)}{b}\right]
$$

Let $\mathbf{x}=\mathbf{y}$

$$
\begin{aligned}
& A_{\text {frontal }}=\left(A_{f}\right)_{c}+\left(A_{f}\right) \\
&=\left(A_{f}\right) \\
&)_{c}+\left(A_{f}\right) \\
& H g
\end{aligned}+.035(N+1) y
$$

Where $N+1=$ total number of plates
$\left.A_{\text {frontal }}=\left(A_{f}\right)_{c}+A_{f}\right)_{H g}+.035 y+.035 \mathrm{Ny}$
Substizute $N=\left[\frac{2\left(\Lambda_{f}\right)}{y_{c}}\right]$ irom Equation (2)

$$
\begin{align*}
\therefore A_{\text {frontal }} & =\left(A_{f}\right)_{c}+\left(A_{f}\right)_{H g}+.035 y+.035\left[\frac{2\left(A_{f}\right)_{c}}{y b}\right] \dot{y} \\
& =\left(A_{f}\right)_{c}+\left(A_{f}\right)_{H g}+\frac{.07\left(\Lambda_{f}\right)}{b}+.035 y \\
& =C_{1}+.035 y \tag{4}
\end{align*}
$$

Where $C_{1}-\left(A_{f}\right)_{c}+\left(A_{f}\right)_{\mathrm{Hg}}+\frac{.07\left(A_{f}\right)_{c}}{b}$

Also $A_{\text {frontal }}=x y=y^{2}$ (by letting $x=y$)
Setting (4) $=(5)$ we get: ${ }^{+}$

$$
\begin{align*}
& y^{2}=c_{1}+.035 y \tag{5}\\
& y^{2}-.035 y-c_{1}=0 \\
& y=\frac{1}{2}\left[.035+\sqrt{(.035)^{2}-4\left(-c_{1}\right)}\right] \\
&=\frac{1}{2}\left[.035+\sqrt{.001225+4 c_{1}}\right]
\end{align*}
$$

Since $x=y$, we also have solved for value of x
The number of passes (N) is obtained from Equation (2) as follows:

$$
\mathrm{N}=\left[\begin{array}{l}
2\left(\mathrm{~A}_{\mathrm{f}}\right) \\
\mathrm{yb}
\end{array}\right]
$$

18. Condenser Dimensions on Mercury Exit Side

The condenser height (y) is the same at the mercury inlet and exit.
Let $x_{0}=$ condenser width at mercury exit (inches)
Let $t_{1}=$ gap between mercury plates at exit
Let $N=N$ (same as in the mercury inlet) $=$ total number of mercury and coolant passages

Using the same approach described und : Section 17 based on mercury pressure drop data from Reference (2), we get for t_{1} :

$$
t_{1}=.59\left[\frac{z}{(\mathrm{y} \mathrm{~N})^{2}}\right]^{1 / 3}
$$

$$
\left(z=F T, y=\text { inches, } t_{1}=\text { inches }\right)
$$

We can then compute X_{o} as follows:

$$
x_{0}=\frac{\mathrm{Nb}}{2}+\frac{N}{2} t_{1}+(N+1)(.035)
$$

19. Coolant Pressure Drop $\quad\left(\Delta P_{c}\right)$

Disregarding the inlet and exit pressure loss:
$\Delta P_{c}=\frac{1.08 \times 10^{-4}}{\rho_{c}}$

$\Delta P_{c}=p s i$
$\rho_{c}=$ coolant average density, $\mathrm{LB} / \mathrm{FT}^{3}$
$\dot{W}_{c}=$ coolant flow rate, $\mathrm{LB} / \mathrm{HR}$
$\left(A_{f}\right)_{c}=$ coolant area, FT^{2}
$\left(A_{d T}\right)_{c}=$ coolant $\mathrm{H} \ldots$ transfer area, FT^{2}
$\mathrm{f}=$ friction factor, function of N_{RE}, obtained from
Figure 63 of Reference (1) for plain fin surface 11.1
20. Weight Penalty Due to Pumping Power ($\mathrm{W}_{\triangle \mathrm{PP}}$)

$$
W_{\Delta P P}=\left[\frac{\Delta_{c}^{P_{c} \hat{W}_{c} \times 14}}{\rho_{c}}\right][\text { (Penalty Factor) }]
$$

Where Penalty Factor $=\frac{1}{1.328 \times 10^{4}}$
$W_{\Delta \mathrm{PP}}=$ Lbs
$\Delta P_{c}=p s i$
$\dot{\mathrm{W}}_{\mathrm{c}}=\mathrm{Lb} / \mathrm{Hr}$
$\rho_{c}=\mathrm{Lb} / \mathrm{FT}^{3}$
21. Weight of Condenser ($W_{\text {cond }}$)
$W_{\text {cond }}=W_{\text {plates }}+W_{\text {fin }}$ (Lbs)
$W_{\text {plates }}=(N+1)(y 2)\left(-\frac{035}{12}\right)\left(\rho_{s s}\right)$
$y, z=f t$
$\rho_{s s}=500 \mathrm{Lb} / \mathrm{FT}^{3} \quad$ (stainless steel)
$\therefore \quad W_{\text {plates }}=1.46(N+I)\left(\begin{array}{l}\text { z }\end{array}\right)$
$W_{f i n s}=\left[\frac{A_{f i n}}{\left(A_{H T}\right.}{ }_{c}\right]\left[\begin{array}{ll}\left(A_{H T}\right) \\ & \\ \end{array}\right]\left[\frac{\delta}{12}\right]\left[\rho_{s s}\right]$
For surface 11.1 :

$$
\begin{aligned}
\frac{\mathrm{A}_{\text {fin }}}{\left(\mathrm{A}_{\mathrm{HT}}\right)_{c}} & =.756 \\
\delta & =.006 \mathrm{in} \\
\rho_{\mathbf{s s}} & =500 \mathrm{Lb} / \mathrm{FT}^{3}
\end{aligned}
$$

$$
\therefore \mathrm{W}_{\text {fins }}=.189\left(\mathrm{~A}_{\mathrm{HT}}\right)_{\mathrm{c}}
$$

22. Weight of Coolant

$$
\begin{aligned}
& W_{c}=v_{c} \rho_{c} \\
& \text { If } \rho_{0} \text { is taken as } 61 \mathrm{Lb} / \mathrm{Fr}^{3} \\
& \mathrm{w}_{\mathrm{c}}=61 \mathrm{v}_{\mathrm{c}} \\
& \left(\nabla_{c} \text { from Section } 15\right)
\end{aligned}
$$

23. Weight of Mercury

The weight of mercury between the inlet and the vapor-kiquid interface was assumed to be negligible.

2h. Weight of Mercury Manifold $\left(W_{\text {manif }}\right){ }_{\mathrm{Hg}}$
Assume a pyramidal shape with an angle $X=7^{\circ}$ (inlet and outlet equal)

$r=\frac{y}{2 \operatorname{Tan} 7^{\circ}}=\frac{y}{2(.1225)}=\frac{y}{.245}$
$s=\frac{y}{2 \operatorname{Stn} 7^{\circ}}=\frac{y}{.244}$
Surface Area $=\frac{1}{2}$ (Perimeter of base) (S)
$=\frac{1}{2}(2 x+2 y)(s)$

- $\frac{1}{2}(4 y)(5)-2 y\left(\frac{y}{.24}\right)$
$-8.2 \mathrm{y}^{2}=\mathrm{in}^{2}$

Weight of 2 manifolds = (Surface Area)(Plate thickness) ($\left.\rho_{s s}\right)(2)$
$=8.2 y^{2}(.035)\left(\frac{500}{1728}\right)(2)$
$=.164 \mathrm{y}^{2}=\mathrm{Lbs}$
$-\left(W_{\text {manif }}\right)_{\mathrm{Hg}}$
$(y=1 n)$
25. Weight of Ligu + di reurr in Mercury Exd Manifold $\left(W_{H_{E_{1}}}\right)$
$W_{H_{1}}=\left(V O_{1}\right)\left(\rho_{\mathrm{Hg}}\right)=1,3\left\{(\mathrm{r})(\mathrm{xy})\left(\hat{\mathrm{F}}_{\mathrm{Hg}}\right)\right.$
(refer to sketch in Soxition 24)
fonsess:ng x and y in terms of y and substituting the mercury density:

$$
W_{H_{1}}=.66 y^{3} \quad(y-\text { inchoo })
$$

20% of the weight compited from ψ avove zquation ras used as a realistic mercury inventor-. It is expacted that a nanifold of the requisite internal yolum can he produced.
26. Coolant i.snifold

Let area of top half cylinder be equal to coolant flow area (\mathcal{A}_{f}) Let $\rho_{\mathrm{ss}}=\frac{500}{1728} \mathrm{Lbs} / \mathrm{in}^{3} \quad$ Plate thickness $=.035 \mathrm{in}$.
a) Area of half cylinder $=\left(A_{f}\right)_{c}=\left[\begin{array}{ll}\frac{\pi}{4} & D^{2}\end{array}\right]\left[\begin{array}{l}\frac{1}{2}\end{array}\right]$

$$
\text { Compute } D=1.6 \quad \sqrt{\left(A_{f}\right)_{c}}
$$

$$
D=\operatorname{in},\left(A_{f}\right)_{c}=\operatorname{in}^{2}
$$

b) W of half cylinder $=y\left(\frac{\pi D}{2}\right)(.035)\left(\frac{500}{1728}\right)$ $=.026 \mathrm{yD} \quad(\mathrm{Mbs}) \quad$ (y in inches)
c) W of plates $=(N+1)(y)(D)(.035)\left(\frac{500}{1778}\right)$

$$
=(N+1)(y D)(.0105)
$$

d) W of end plate $=\frac{\mathrm{xy}}{2} \quad(.035)\left(\frac{500}{1728}\right)$

$$
=.0053 y^{2}(x=y)
$$

e) W of top and bottom $=\left(y D+y \frac{D}{2}\right)(.035)\left(\frac{500}{1728}\right)$

$$
=.008 \mathrm{y} \mathrm{D}
$$

f) The total weight for 2 manifolds will be (W^{\prime} manif $)$

$$
\begin{aligned}
& =2\left[.016 \mathrm{yD}+.0105(\mathrm{~N}+1)(\mathrm{yD})+.0053 \mathrm{y}^{2}+.008 \mathrm{y} \mathrm{D}\right] \\
& =2 y[.024 \mathrm{D}+.0105(\mathrm{~N}+1)+.0053 \mathrm{y}]
\end{aligned}
$$

g) Weight of coolant in 2 manifolds:

$$
\begin{gathered}
\begin{aligned}
\mathrm{W}_{\mathrm{c}_{\text {manif }}} & =2\left[\begin{array}{lll}
x & y & D
\end{array} \rho_{c}\right]\left[\frac{\frac{1}{2}}{2}\right. \\
& =.035 y^{2} \mathrm{D}
\end{aligned} \\
\text { (Assuming } x-y, \rho_{c}=\frac{61}{1728} \mathrm{Lb} / \mathrm{in}^{2},
\end{gathered}
$$

50% of the weight, computed from the above equation was used as a realistic mercury inventory. It is expected that a manifold of the requisite internal volume can be produced.
h) Weight of liquid mercury in coulant manifold at mercury exit end $\left(\mathrm{W}_{\mathrm{Hg}}\right)_{2}$

$$
\begin{array}{r}
W_{H_{2}}=\frac{x y D \rho_{\mathrm{Hg}}=\frac{y^{2} \mathrm{D}(840)}{2} 2(1728)}{2} \\
=.24 山 \mathrm{y}^{2} \mathrm{D} \quad(\mathrm{y} \text { in inches) } \\
(\mathrm{D} \text { in inches) }
\end{array}
$$

14% of the weight computed from the above equation was used as a realistic mercury inventory. It is exoected that a manifold of the requisite internal volume can be produced.
i) Total weight of coolant manifold

$$
\left(W_{\text {manif }}\right)_{c}=W_{\text {manif }}^{\prime}+W_{c_{\text {manif }}}+W_{H_{g}}
$$

27. Total Weight of Mercury and Coolant Manifolds

$$
W_{\operatorname{manif}}=\left(W_{\operatorname{manif}}\right)+\left(W_{\operatorname{manif}}\right)+W_{H g}
$$

Three cases were solved and a curve of $W_{\text {manif }}$ vs $\left(A_{f}\right)$ was plotted to eliminate calculations.

PART B
Extrapolation to a Higher Condensing Temperature and Higher Load
28. Thermo Cycle

The coolant outlet and mercury inlet and outlet temperatures will be increased $20^{\circ} \mathrm{F}$. The "old" heat load will be increased by an amount \triangle Q. Such a thermo cycle can be represented os follows:

Given
$T_{\mathrm{Hg}_{1}}^{\prime}=T_{\mathrm{Hg}}+20^{\circ} \mathrm{F}$
$T_{\mathrm{Hg}_{2}}^{\prime}=T_{\mathrm{Hg}_{2}}+20^{\circ} \mathrm{F}$
$T_{\mathrm{C}_{2}}^{\prime}=T_{\mathrm{C}_{2}}+20^{\circ} \mathrm{F}$
$T_{\mathrm{Hg}_{1}}-T_{\mathrm{Hg}_{2}}=20^{\circ} \mathrm{F}$
$T_{1 \mathrm{Hg}_{1}}^{\prime}-T_{\mathrm{Hg}_{2}}^{\prime}=20^{\circ} \mathrm{F}$

Temp.

Refer to figure above.

$$
\begin{aligned}
& Q_{\text {old }}=U A_{1} \Delta T_{\text {log old }}=U\left(C_{i}^{z} z\right) \Delta T_{\text {log old }} \\
& \triangle Q=U A_{2} \triangle T_{\text {log new }}=U\left(C_{2} \quad \text { Z) } \Delta T_{\text {log now }}\right.
\end{aligned}
$$

Where C_{2} is a proDortionality constant. If we divide one equation by the other we get:

$$
\begin{aligned}
& \frac{Q_{\text {old }}}{\Delta^{Q}}=\frac{2 \cdot \Delta^{T} \text { log old }^{\Delta^{2} \Delta^{T}} \frac{\text { log new }}{}}{\Delta^{2}} \\
& \therefore \Delta Z=2\left[\begin{array}{ll}
\Delta Q \\
Q_{\text {old }} & \left.\frac{\Delta T_{1 \text { log old }}}{\Delta^{T} \text { log new }}\right]
\end{array}\right]
\end{aligned}
$$

$\Delta \mathrm{Z}=$ increase in condenser length to handle additional load. Based on the nold" x, y, and U derived in Part A we can establish the following proportions:

$$
\begin{aligned}
& W_{\text {cond new }}=\left(W_{\text {cond old }}\right)\left(\frac{Z \text { new }}{Z}\right) \\
& \text { wher old } Z_{\text {new }}=Z_{\text {old }}+\Delta Z \\
& W_{\text {cool new }}=\left(\frac{\left.Z_{\text {new }}\right)}{Z_{\text {old }}}\right. \\
& W_{\triangle P P \text { new }}=\left(W_{\triangle P P \text { old }}\right)\left(\frac{Z_{\text {new }}}{Z_{\text {old }}}\right. \\
& W_{\text {manif. new }}=W_{\text {manif. old }}
\end{aligned}
$$

(See Section 29 on how to compute $\Delta T_{\log \text { old }} \Delta T_{\text {log new }}$, etc.)
29. Coolant Temperatures

Given $Q_{\text {old }}=1.082 \times 10^{6} \mathrm{BTU} / \mathrm{Hr}$
Given $Q_{\text {new }}=1.147 \times 10^{6} \mathrm{ETU} / \mathrm{Hr}$
Given $\begin{aligned} \mathrm{T}_{\mathrm{Hg}_{1}} & =680^{\circ} \mathrm{F} \\ \text { Given } \mathrm{T}_{\mathrm{Hg}_{2}} & =660^{\circ} \mathrm{F} \\ \mathrm{T}_{\mathrm{C}_{2}} & =\text { variable input data }\end{aligned}$
Page 24

$$
\begin{aligned}
& \Delta Q=Q_{\text {new }}-Q_{o l d}=65,000 \mathrm{BTU} / \mathrm{Hr} \\
& \text { Compute } \mathrm{I}_{\mathrm{Hg}_{1}}=\mathrm{TH}_{\mathrm{H}_{1}}+20^{\circ} \mathrm{F}=700^{\circ} \mathrm{F} \\
& \text { (prime refers to new; no prime means cld) } \\
& \text { Compute } \mathrm{T}_{\mathrm{Hg}_{2}}=\mathrm{TH}_{\mathrm{H}_{2}}+25^{\circ} \mathrm{F}=680^{\circ} \mathrm{F} \\
& \text { Compute } \mathrm{T}_{\mathrm{C}_{2}}=\mathrm{T}_{\mathrm{C}_{2}}+20^{\circ} \mathrm{F} \\
& \text { Compute } T_{C_{2}}^{\prime}-T_{C_{1}}^{\prime}=\frac{Q_{\text {old }}}{\hat{W}_{c} C_{P_{c}}{ }^{\text {ave }}} \\
& T_{C_{1}}-T_{C_{2}}=T_{C_{1}}-T_{C_{2}} \\
& \text { Compute } T_{c_{1}}=T_{c_{2}}+\left(T_{c_{2}}^{\prime}-T_{c_{1}}^{\prime}\right) \\
& \text { Compute } T_{C_{1}}^{\prime}=T_{C_{1}}+20^{\circ} F \\
& \text { Compute } \triangle T_{1}=T_{H_{g}}-T_{C_{2}} \\
& \text { compute } \Delta \mathrm{T}_{2}=\mathrm{T}_{\mathrm{Hg}_{2}}-\mathrm{T}_{\mathrm{C}_{1}} \\
& \text { compute } \Delta^{T_{l o g} \text { old }}=\frac{\Delta_{2}-\Delta^{T} I_{1}}{\operatorname{In}\left[\frac{\triangle^{T_{2}}}{\triangle^{T_{1}}}\right]} \\
& \text { Compute } T_{C_{1}}{ }^{\prime}-T_{C_{1}}{ }^{\prime}=\frac{\Delta Q}{\hat{W}_{c} C_{P_{c}}} \\
& \text { Compute } T_{c_{1}}{ }^{\prime}=T_{c_{1}}{ }^{\prime}-\left(T_{c_{1}}{ }^{\prime}-T_{c_{1_{2}}}{ }^{\prime}\right)
\end{aligned}
$$

LINT OF REFERENCES

1. Kays, W. and London, A. L., Compact Heat Exchangers, The National Press, Palo Alto, California, 1955.
2. SNAP-8 Radiator Topical Report, AGC Nucleonics Division, San Ramon, California, June 1962.

APPENDIX C

OPTIMIZATION OF NaK TUBE AND SHELL CONDENSER

1. The purpose of the SNAP-8 Condenser Optimization Study is to select the length, average diameter, and number of condenser tubes so as to minimize the total weight of the condenser. The total weight includes the weights of tubes. shell, mercary,t, and pump. The configuration examined is a counterflow tube-in-shell condenser. Coolant is a eutectic mixture of NaK. Initial conditions are as follows:

Mercury flow rate $\quad 9100 \mathrm{lb} / \mathrm{hr}$
Condensing temperature $680^{\circ} \mathrm{F}$
Subcooling temperature $520^{\circ} \mathrm{F}$
2. A total of 36 cases were computed. The variable parameters and their values are listed below:

Coolant heat transfer coefficient $625,1250,2500 \mathrm{Bta} / \mathrm{ft}^{2} \mathrm{hr}{ }^{\circ} \mathrm{F}$
Coolant flow rate $\quad 27 \mathrm{~K}, 32 \mathrm{~K}, 37 \mathrm{~K} \mathrm{lb} / \mathrm{hr}$
Coolant outlet temperature $600,620,640,660^{\circ} \mathrm{F}$
3. The following paragraphs present a brief explanation of the methods and formulas employed in the study.
a. First, the product of tube length, average diameter, and number of tubes is computed from a consideration of the overall heat transfer coefficient in the condensing region.

$$
(L)(N)(D)=\frac{U A}{w}\left[\frac{1}{h_{H g}}+\frac{1}{K_{W}(1+8 / 2 D)}+\frac{1}{h_{c}(I+8 / D)}\right]
$$

$$
\begin{aligned}
\text { where: } & \mathrm{UA}=Q_{\text {cond }} / \Delta \mathrm{T}_{\text {log }} \\
& Q_{\text {cond }}=\dot{W}_{H g} H_{u} \\
& T_{\text {log }}=\left(T_{R I}-T_{c}\right) / \operatorname{Ln}\left[\left(T_{\text {cond }}-T_{c}\right) /\left(T_{\text {cond }}-T_{R I}\right)\right] \\
& T_{c}=T_{R I}-Q_{\text {cond }} / \dot{W}_{c} G_{c}
\end{aligned}
$$

The following assumptions are made:

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{Hg}}=1250 \mathrm{Btu} / \mathrm{ft}^{2} \mathrm{hr}^{\circ} \mathrm{F}(\operatorname{Ref}, \mathrm{a}) \\
& \mathrm{k}_{\mathrm{w}}=10 \mathrm{Btu} / \mathrm{ft} \mathrm{hr}{ }^{\circ} \mathrm{F} \\
& \delta / \mathrm{D}=0.10 \\
& \mathrm{H}_{\mathrm{v}}=125.7 \mathrm{Btu} / \mathrm{Lb} \\
& \mathrm{C}_{\mathrm{c}}=0.214 \mathrm{Btu} / 1 \mathrm{~b}^{0} \mathrm{~F}
\end{aligned}
$$

b. Second, the product of the average tube diameter and number of tubes is computed from a consideration of the pressure drop in the condensing region. Reference (a) presents a curve of the ratio of actual prissure drop in the condensing region to pressure drop if vapor only were present versus the parameter $\left(\mathrm{Re}_{\mathrm{Hg}}\right)_{\text {in }}\left(\frac{v \mathrm{Hg}}{10}\right)^{1.25}$

The following point is chosen for the analysis: $\varnothing=1.8$ at

$$
\begin{aligned}
& \left(\mathrm{Re}_{\mathrm{Hg}}\right)_{\mathrm{in}}\left(\frac{v \mathrm{Hg}}{10}\right)^{1.25}=10,000 \\
& \mathrm{ND}_{\mathrm{in}}=4 \dot{\mathrm{~W}}_{\mathrm{Hg}} / \pi \mu_{\mathrm{Hg}}\left(\mathrm{Re}_{\mathrm{Hg}}\right)_{\mathrm{in}}
\end{aligned}
$$

where: $D_{\text {in }}=D / 0.95 \quad$ (assumed)

$$
\begin{aligned}
\mu_{\mathrm{Hg}} & =0.148 \mathrm{lb} / \mathrm{ft} \mathrm{hr} \\
\left(\mathrm{Re}_{\mathrm{Hg}}\right)_{\mathrm{in}} & =10,000\left(\frac{v_{\mathrm{Hg}}}{10}\right)^{1.25} \\
v_{\mathrm{Hg}} & =3.85 \mathrm{It}^{3} / \mathrm{lb}
\end{aligned}
$$

c. Third, the parameter $D^{5} N^{2} / L=D^{3}(N D)^{3} /(L N D)$ is computed from the same pressure drop criterion. The singlemphase vapor pressure drop is given by

$$
\begin{aligned}
\Delta P_{v} & =f(L / D) \rho_{H g}\left(V_{\mathrm{Hg}}^{2} / 2 g\right) \\
& =f(\mathrm{~L} / D)\left(\rho_{\mathrm{Hg}} / 2 g\right)\left(4 \dot{W}_{\mathrm{Hg}} / \mathrm{N} \pi \mathrm{D}^{2} \rho_{\mathrm{Hg}}\right)^{2}
\end{aligned}
$$

Rearranging, this becomes:

$$
D^{5} N^{2} / L=8 f W_{H g}^{2} / \pi^{2} g \rho_{H g} \Delta P_{v}
$$

where: $f=0.0225$ (Ref. b)

$$
\begin{aligned}
& \rho_{\mathrm{Hg}}=0.26 \mathrm{lb} / \mathrm{ft}^{3} \\
& \Delta \mathrm{P}_{\mathrm{V}}=\Delta \mathrm{P}_{\mathrm{tp}} / \emptyset \\
& \Delta P_{\text {tp }}=4 \mathrm{psi} \quad \text { (assumed) }
\end{aligned}
$$

$d_{\text {. }}$ Fourth, from the three independent relations between tube length, average diameter, and number of tubes, unique values for these quantities may be computed. The computed length for the condensing section is then increased by the ratio of subcooling heat load to condensing heat load.

$$
\begin{aligned}
& L^{\prime}=L\left(I+Q_{\text {sub }} / Q_{\text {cond }}\right) \\
& \text { where: } \quad Q_{\text {sub }}=\dot{W}_{H g} C_{H g}\left(T_{\text {cond }}-T_{\text {sub }}\right) \\
& C_{H g}=0.0325 \mathrm{Btu} / l b^{\circ} F
\end{aligned}
$$

e. Fifth, the weight of the tubes is computed.

$$
\begin{aligned}
& W_{t}=\pi L^{\prime} N D \delta \rho_{t} \\
& \text { where: } \delta=0.20 \mathrm{in} \\
& \rho_{t}=0.28 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

f. Sixth, the weight of the shell is computed assuming a hexagonal packing of the tubes with an average spacing of 0.050 in . between tubes. It is further assumed that the manifolds attached to the shell weigh the same as five disks the size of the cross-section of the shell.

$$
\begin{aligned}
& W_{s}=\pi D_{s} t L^{1} \rho_{s}+\frac{5 \pi}{4} D_{s}^{2} t \rho_{s} \\
& \text { where: } t=0.063 \mathrm{in} . \\
& \qquad \rho_{s}=0.280 \mathrm{Ib} / \mathrm{in}_{0}^{3}
\end{aligned}
$$

g. Seventh, the weight of the liquid mercury in the subcooling portion is computed.

$$
\begin{aligned}
& W_{\mathrm{Hg}}=\frac{\pi}{4} D^{2}\left(\mathrm{~L}^{\prime}-L\right) \rho_{\mathrm{HgL}} \mathrm{~N} \\
& \text { where: } \rho_{\mathrm{HgL}}=800 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

h. Eighth, the weight of the coolant is computed.

$$
\begin{aligned}
& W_{c}=\frac{\pi}{4}\left(D_{s}^{2}-N D^{2}\right) L^{1} \rho_{c} \\
& \text { where: } \quad \rho_{c}=50.9 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

i. Ninth, the equivalent weight of the pumping power is computed making use of the Nusselt-Reynolds-Prandtl number correlation given in Reference (c): $N u=61.2\left[\left(A_{f}{ }^{2} / A_{H}{ }^{2}\right) \operatorname{Pr~Re}\right] 3 / 5$

$$
W_{p}=0.271\left(\dot{W}_{c} \Delta P_{c} / \rho_{c}\right)
$$

where: $\Delta P_{c}=f V_{c}{ }^{2} L^{\prime} \rho_{\mathrm{c}} / 2 g D_{\mathrm{H}}$
$\mathrm{f}=\psi(\mathrm{Re}) \quad$ (Ref)
$\mathrm{V}_{\mathrm{c}}=\operatorname{Re} \mu_{\mathrm{c}} / \mathrm{D}_{\mathrm{H}} \rho_{\mathrm{C}}$
$\operatorname{Re}=(\mathrm{Nu} / 51.2)^{5 / 3} \mathrm{~A}_{\mathrm{H}}{ }^{2} / \mathrm{A}_{\mathrm{f}}{ }^{2} \operatorname{Pr}$
$N u=h_{c} D_{H} / k_{c}$
$D_{H}=4 \frac{\pi}{4}\left(D_{s}^{2}-N D^{2}\right) / \pi\left(D_{s}+N D\right)$
$A_{H}=\pi L^{\prime} N D$
$A_{f}=\frac{\pi}{4}\left(D_{s}{ }^{2}-N D^{2}\right)$
The following assumptions are made:
$\mathrm{k}_{\mathrm{c}}=14.74 \mathrm{~B}$ tu/ ft hr ${ }^{\circ} \mathrm{F}$
$\mathrm{Pr}=0.00972$
$\mu_{\mathrm{c}}=0.670 \mathrm{lb} / \mathrm{ft} \mathrm{hr}$
j. Finally, the total weight is computed by summing the five component weights computed above.
4. References:
a. "Government-Industry Conferf \cdot g on Mercury Condensing" NASA TN D-1188, February 1962
b. B. Gebhart, "Heat Transfer," McGraw-Hill Book Co., 1961
c. "Sodium-NaK Supplement, Liquid Metals Handbook," TID 5277, AEC and Department of Navy, July 1955.
5. Nomenclature:

A_{f}	Coolant flow area
A_{H}	Heat transfer area
c	Specific heat
D	Diameter
D_{H}	Hydraulic diamèer
f	Fanning friction facto:
g	Conversion factor ($32.2 \mathrm{ib} / \mathrm{slug}$)
h	Heat transfer coefificient
H_{v}	Heat of vaporization
k	Thermal conductivity
L	Condensing length
L^{\prime}	Total length
N	Number of tubes
Nu	Nusselt number
Pr	Prandtl number
Q	Heat transfer rate
Re	Reynolds number
t	Shell thickness
T	Temperature
UA	Overall heat transfer coefficient

