62 research outputs found

    Future Changes in the Hadley Circulation: The Role of Ocean Heat Transport

    No full text

    The effect of subtropical aerosol loading on equatorial precipitation

    No full text
    Cloud‐aerosol interactions are considered as one of the largest sources of uncertainties in the study of climate change. Here another possible cloud‐aerosol effect on climate is proposed. A series of large eddy simulations (LES) with bin microphysics reveal a sensitivity of the total atmospheric water vapor amount to aerosol concentration. Under polluted conditions the rain is suppressed and the total amount of water vapor in the atmosphere increases with time compared to clean precipitating conditions. Theoretical examination of this aerosol effect on water vapor transport from the subtropics to the tropics, and hence on the equatorial rain and Hadley circulation, is conducted using an idealized general circulation model (GCM). It is shown that a reduction in the subtropical rain amount results in increased water vapor advection to the tropics and enhanced equatorial rain and Hadley circulation. This joins previously proposed mechanisms on the radiative aerosol effect on the general circulation

    The effect of subtropical aerosol loading on equatorial precipitation

    No full text
    Cloud‐aerosol interactions are considered as one of the largest sources of uncertainties in the study of climate change. Here another possible cloud‐aerosol effect on climate is proposed. A series of large eddy simulations (LES) with bin microphysics reveal a sensitivity of the total atmospheric water vapor amount to aerosol concentration. Under polluted conditions the rain is suppressed and the total amount of water vapor in the atmosphere increases with time compared to clean precipitating conditions. Theoretical examination of this aerosol effect on water vapor transport from the subtropics to the tropics, and hence on the equatorial rain and Hadley circulation, is conducted using an idealized general circulation model (GCM). It is shown that a reduction in the subtropical rain amount results in increased water vapor advection to the tropics and enhanced equatorial rain and Hadley circulation. This joins previously proposed mechanisms on the radiative aerosol effect on the general circulation

    The effects of the spatial distribution of direct anthropogenic aerosols radiative forcing on atmospheric circulation

    No full text
    The large uncertainty in estimating the global aerosol radiative forcing (ARF) is one of the major challenges the climate community faces for climate projection. While the global-mean ARF may affect global quantities such as surface temperature, its spatial distribution may result in local thermodynamical and, thus, dynamical changes. Future changes in aerosol emissions distribution could further modulate the atmospheric circulation. Here, the effects of the spatial distribution of the direct anthropogenic ARF are studied using an idealized global circulation model, forced by a range of estimated-ARF amplitudes, based on the Copernicus Atmosphere Monitoring Service data. The spatial distribution of the estimated-ARF is globally decomposed, and the effects of the different modes on the circulation are studied. The most dominant spatial distribution feature is the cooling of the Northern Hemisphere in comparison to the Southern Hemisphere. This induces a negative meridional temperature gradient around the equator, which modulates the mean fields in the tropics. The ITCZ weakens and shifts southward, and the Northern (Southern) Hemisphere Hadley cell strengthens (weakens). The localization of the ARF in the Northern Hemisphere midlatitudes shifts the subtropical jet poleward and strengthens both the eddy-driven jet and Ferrel cell, because of the weakening of high-latitude eddy fluxes. Finally, the larger aerosol concentration in Asia compared to North America results in an equatorial superrotating jet. Understanding the effects of the different modes on the general circulation may help elucidate the circulation’s future response to the projected changes in ARF distribution

    The effects of the spatial distribution of direct anthropogenic aerosols radiative forcing on atmospheric circulation

    No full text
    The large uncertainty in estimating the global aerosol radiative forcing (ARF) is one of the major challenges the climate community faces for climate projection. While the global-mean ARF may affect global quantities such as surface temperature, its spatial distribution may result in local thermodynamical and, thus, dynamical changes. Future changes in aerosol emissions distribution could further modulate the atmospheric circulation. Here, the effects of the spatial distribution of the direct anthropogenic ARF are studied using an idealized global circulation model, forced by a range of estimated-ARF amplitudes, based on the Copernicus Atmosphere Monitoring Service data. The spatial distribution of the estimated-ARF is globally decomposed, and the effects of the different modes on the circulation are studied. The most dominant spatial distribution feature is the cooling of the Northern Hemisphere in comparison to the Southern Hemisphere. This induces a negative meridional temperature gradient around the equator, which modulates the mean fields in the tropics. The ITCZ weakens and shifts southward, and the Northern (Southern) Hemisphere Hadley cell strengthens (weakens). The localization of the ARF in the Northern Hemisphere midlatitudes shifts the subtropical jet poleward and strengthens both the eddy-driven jet and Ferrel cell, because of the weakening of high-latitude eddy fluxes. Finally, the larger aerosol concentration in Asia compared to North America results in an equatorial superrotating jet. Understanding the effects of the different modes on the general circulation may help elucidate the circulation’s future response to the projected changes in ARF distribution

    [Epidemiological findings in the study of congenital malformations]

    No full text
    Experience with thalidomide and German measles contracted during pregnancy has focused attention on the question of birth defects. It is suggested that good reasons exist for the carrying out epidemiological investigations to establish the true incidence and geographical and social distribution of such deformities, and hence their possibly "environmental" origin at least in some instances. Such investigations would supplement research into experimental teratology. The advantages, disadvantages and limitations of retrospective and prospective investigations are discussed. A detailed account is given of a prospective survey in progress in Israel. Reference is also made to a similar survey being launched in some Italian cities with the aid of the NRC (Italian: CNR)
    • 

    corecore