112 research outputs found
ΔNp63 Regulates a Common Landscape of Enhancer Associated Genes in Non-Small Cell Lung Cancer
Distinct lung stem cells give rise to lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). ΔNp63, the p53 family member and p63 isoform, guides the maturation of these stem cells through the regulation of their self-renewal and terminal differentiation; however, the underlying mechanistic role regulated by ∆Np63 in lung cancer development has remained elusive. By utilizing a ΔNp63-specific conditional knockout mouse model and xenograft models of LUAD and LUSC, we found that ∆Np63 promotes non-small cell lung cancer by maintaining the lung stem cells necessary for lung cancer cell initiation and progression in quiescence. ChIP-seq analysis of lung basal cells, alveolar type 2 (AT2) cells, and LUAD reveals robust ∆Np63 regulation of a common landscape of enhancers of cell identity genes. Importantly, one of these genes, BCL9L, is among the enhancer associated genes regulated by ∆Np63 in Kras-driven LUAD and mediates the oncogenic effects of ∆Np63 in both LUAD and LUSC. Accordingly, high BCL9L levels correlate with poor prognosis in LUAD patients. Taken together, our findings provide a unifying oncogenic role for ∆Np63 in both LUAD and LUSC through the regulation of a common landscape of enhancer associated genes
Is Nitric Oxide Decrease Observed with Naphthoquinones in LPS Stimulated RAW 264.7 Macrophages a Beneficial Property?
The search of new anti-inflammatory drugs has been a current preoccupation, due to the need of effective drugs, with less adverse reactions than those used nowadays. Several naphthoquinones (plumbagin, naphthazarin, juglone, menadione, diosquinone and 1,4-naphthoquinone), plus p-hydroquinone and p-benzoquinone were evaluated for their ability to cause a reduction of nitric oxide (NO) production, when RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS). Dexamethasone was used as positive control. Among the tested compounds, diosquinone was the only one that caused a NO reduction with statistical importance and without cytotoxicity: an IC25 of 1.09±0.24 µM was found, with 38.25±6.50% (p<0.001) NO reduction at 1.5 µM. In order to elucidate if this NO decrease resulted from the interference of diosquinone with cellular defence mechanisms against LPS or to its conversion into peroxynitrite, by reaction with superoxide radical formed by naphthoquinones redox cycling, 3-nitrotyrosine and superoxide determination was also performed. None of these parameters showed significant changes relative to control. Furthermore, diosquinone caused a decrease in the pro-inflammatory cytokines: tumour necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6). Therefore, according to the results obtained, diosquinone, studied for its anti-inflammatory potential for the first time herein, has beneficial effects in inflammation control. This study enlightens the mechanisms of action of naphthoquinones in inflammatory models, by checking for the first time the contribution of oxidative stress generated by naphthoquinones to NO reduction
Amelioration of Experimental Autoimmune Encephalomyelitis by Plumbagin through Down-Regulation of JAK-STAT and NF-κB Signaling Pathways
Plumbagin(PL), a herbal compound derived from roots of the medicinal plant Plumbago zeylanica, has been shown to have immunosuppressive properties. Present report describes that PL is a potent novel agent in control of encephalitogenic T cell responses and amelioration of mouse experimental autoimmune encephalomyelitis (EAE), through down-regulation of JAK-STAT pathway. PL was found to selectively inhibit IFN-γ and IL-17 production by CD4+ T cells, which was mediated through abrogated phosphorylation of JAK1 and JAK2. Consistent with IFN-γ and IL-17 reduction was suppressed STAT1/STAT4/T-bet pathway which is critical for Th1 differentiation, as well as STAT3/ROR pathway which is essential for Th17 differentiation. In addition, PL suppressed pro-inflammatory molecules such as iNOS, IFN-γ and IL-6, accompanied by inhibition of IκB degradation as well as NF-κB phosphorylation. These data give new insight into the novel immune regulatory mechanism of PL and highlight the great value of this kind of herb compounds in probing the complex cytokine signaling network and novel therapeutic targets for autoimmune diseases
Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion
Background: During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Intracellular thiols are maintained in their reduced state by a network of redox regulating peptides, proteins and enzymes such as glutathione, thioredoxins and thioredoxin reductase. Here we have investigated whether any relationship exists between age and secreted or cell surface thioredoxin-1, intracellular glutathione concentration and T cell surface thioredoxin 1 (Trx-1) and how this is related to interleukin (IL)-2 production.Results: Healthy older adults have reduced lymphocyte surface expression and lower circulating plasma Trx-1 concentrations. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show that cell surface Trx-1 is lowered, secretion of Trx-1 is decreased and the response to the lectin phytohaemagglutinin measured as IL-2 production is also affected. These effects are recapitulated by another glutathione depleting agent, diethylmaleate.Conclusion: Together these data suggest that a relationship exists between the intracellular redox compartment and Trx-1 proteins. Loss of lymphocyte surface Trx-1 may be a useful biomarker of healthy ageing. © 2013 Carilho Torrao et al.; licensee Chemistry Central Ltd
Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation
Biochemical mechanism underlying hypertriglyceridemia and hepatic steatosis/hepatomegaly induced by acute schisandrin B treatment in mice
Database architecture for data mining to aid real-time range safety decision in a test range
- …
